ﻻ يوجد ملخص باللغة العربية
In recent years malware has become increasingly sophisticated and difficult to detect prior to exploitation. While there are plenty of approaches to malware detection, they all have shortcomings when it comes to identifying malware correctly prior to exploitation. The trade-off is usually between false positives, causing overhead, preventing normal usage and the risk of letting the malware execute and cause damage to the target. We present a novel end-to-end solution for in-memory malicious activity detection done prior to exploitation by leveraging machine learning capabilities based on data from unique run-time logs, which are carefully curated in order to detect malicious activity in the memory of protected processes. This solution achieves reduced overhead and false positives as well as deployment simplicity. We implemented our solution for Windows-based systems, employing multi disciplinary knowledge from malware research, machine learning, and operating system internals. Our experimental evaluation yielded promising results. As we expect future sophisticated malware may try to bypass it, we also discuss how our solution can be extended to thwart such bypassing attempts.
Domain name system (DNS) is a crucial part of the Internet, yet has been widely exploited by cyber attackers. Apart from making static methods like blacklists or sinkholes infeasible, some weasel attackers can even bypass detection systems with machi
Smart Contracts (SCs) in Ethereum can automate tasks and provide different functionalities to a user. Such automation is enabled by the `Turing-complete nature of the programming language (Solidity) in which SCs are written. This also opens up differ
Modern vehicles are complex cyber-physical systems made of hundreds of electronic control units (ECUs) that communicate over controller area networks (CANs). This inherited complexity has expanded the CAN attack surface which is vulnerable to message
Malware abuses TLS to encrypt its malicious traffic, preventing examination by content signatures and deep packet inspection. Network detection of malicious TLS flows is an important, but challenging, problem. Prior works have proposed supervised mac
Detecting the newly emerging malware variants in real time is crucial for mitigating cyber risks and proactively blocking intrusions. In this paper, we propose MG-DVD, a novel detection framework based on dynamic heterogeneous graph learning, to dete