ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Based CAN Intrusion Detection Benchmark

92   0   0.0 ( 0 )
 نشر من قبل Deborah Blevins
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern vehicles are complex cyber-physical systems made of hundreds of electronic control units (ECUs) that communicate over controller area networks (CANs). This inherited complexity has expanded the CAN attack surface which is vulnerable to message injection attacks. These injections change the overall timing characteristics of messages on the bus, and thus, to detect these malicious messages, time-based intrusion detection systems (IDSs) have been proposed. However, time-based IDSs are usually trained and tested on low-fidelity datasets with unrealistic, labeled attacks. This makes difficult the task of evaluating, comparing, and validating IDSs. Here we detail and benchmark four time-based IDSs against the newly published ROAD dataset, the first open CAN IDS dataset with real (non-simulated) stealthy attacks with physically verified effects. We found that methods that perform hypothesis testing by explicitly estimating message timing distributions have lower performance than methods that seek anomalies in a distribution-related statistic. In particular, these distribution-agnostic based methods outperform distribution-based methods by at least 55% in area under the precision-recall curve (AUC-PR). Our results expand the body of knowledge of CAN time-based IDSs by providing details of these methods and reporting their results when tested on datasets with real advanced attacks. Finally, we develop an after-market plug-in detector using lightweight hardware, which can be used to deploy the best performing IDS method on nearly any vehicle.



قيم البحث

اقرأ أيضاً

Modern vehicles rely on scores of electronic control units (ECUs) broadcasting messages over a few controller area networks (CANs). Bereft of security features, in-vehicle CANs are exposed to cyber manipulation and multiple researches have proved via ble, life-threatening cyber attacks. Complicating the issue, CAN messages lack a common mapping of functions to commands, so packets are observable but not easily decipherable. We present a transformational approach to CAN IDS that exploits the geometric properties of CAN data to inform two novel detectors--one based on distance from a learned, lower dimensional manifold and the other on discontinuities of the manifold over time. Proof-of-concept tests are presented by implementing a potential attack approach on a driving vehicle. The initial results suggest that (1) the first detector requires additional refinement but does hold promise; (2) the second detector gives a clear, strong indicator of the attack; and (3) the algorithms keep pace with high-speed CAN messages. As our approach is data-driven it provides a vehicle-agnostic IDS that eliminates the need to reverse engineer CAN messages and can be ported to an after-market plugin.
Many current approaches to the design of intrusion detection systems apply feature selection in a static, non-adaptive fashion. These methods often neglect the dynamic nature of network data which requires to use adaptive feature selection techniques . In this paper, we present a simple technique based on incremental learning of support vector machines in order to rank the features in real time within a streaming model for network data. Some illustrative numerical experiments with two popular benchmark datasets show that our approach allows to adapt to the changes in normal network behaviour and novel attack patterns which have not been experienced before.
This paper introduces a new similarity measure, the covering similarity, that we formally define for evaluating the similarity between a symbolic sequence and a set of symbolic sequences. A pair-wise similarity can also be directly derived from the c overing similarity to compare two symbolic sequences. An efficient implementation to compute the covering similarity is proposed that uses a suffix tree data-structure, but other implementations, based on suffix array for instance, are possible and possibly necessary for handling large scale problems. We have used this similarity to isolate attack sequences from normal sequences in the scope of Host-based Intrusion Detection. We have assessed the covering similarity on two well-known benchmarks in the field. In view of the results reported on these two datasets for the state of the art methods, and according to the comparative study we have carried out based on three challenging similarity measures commonly used for string processing or in bioinformatics, we show that the covering similarity is particularly relevant to address the detection of anomalies in sequences of system calls
The Controller Area Network (CAN) protocol is ubiquitous in modern vehicles, but the protocol lacks many important security properties, such as message authentication. To address these insecurities, a rapidly growing field of research has emerged tha t seeks to detect tampering, anomalies, or attacks on these networks; this field has developed a wide variety of novel approaches and algorithms to address these problems. One major impediment to the progression of this CAN anomaly detection and intrusion detection system (IDS) research area is the lack of high-fidelity datasets with realistic labeled attacks, without which it is difficult to evaluate, compare, and validate these proposed approaches. In this work we present the first comprehensive survey of publicly available CAN intrusion datasets. Based on a thorough analysis of the data and documentation, for each dataset we provide a detailed description and enumerate the drawbacks, benefits, and suggested use cases. Our analysis is aimed at guiding researchers in finding appropriate datasets for testing a CAN IDS. We present the Real ORNL Automotive Dynamometer (ROAD) CAN Intrusion Dataset, providing the first dataset with real, advanced attacks to the existing collection of open datasets.
This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such at tacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا