ﻻ يوجد ملخص باللغة العربية
A two-dimensional (2D) material system with both piezoelectricity and ferromagnetic (FM) order, referred to as a 2D piezoelectric ferromagnetism (PFM), may open up unprecedented opportunities for intriguing physics. Inspired by experimentally synthesized Janus monolayer MoSSe from $mathrm{MoS_2}$, in this work, the Janus monolayer $mathrm{CrBr_{1.5}I_{1.5}}$ with dynamic, mechanical and thermal stabilities is predicted, which is constructed from synthesized ferromagnetic $mathrm{CrI_3}$ monolayer by replacing the top I atomic layer with Br atoms. Calculated results show that monolayer $mathrm{CrBr_{1.5}I_{1.5}}$ is an intrinsic FM half semiconductor with valence and conduction bands being fully spin-polarized in the same spin direction. Furthermore, monolayer $mathrm{CrBr_{1.5}I_{1.5}}$ possesses a sizable magnetic anisotropy energy (MAE). By symmetry analysis, it is found that both in-plane and out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. The calculated in-plane $d_{22}$ value of 0.557 pm/V is small. However, more excitingly, the out-of-plane $d_{31}$ is as high as 1.138 pm/V, which is obviously higher compared with ones of other 2D known materials. The strong out of-plane piezoelectricity is highly desirable for ultrathin piezoelectric devices. Moreover, strain engineering is used to tune piezoelectricity of monolayer $mathrm{CrBr_{1.5}I_{1.5}}$. It is found that compressive strain can improve the $d_{22}$, and tensile strain can enhance the $d_{31}$. A FM order to antiferromagnetic (AFM) order phase transition can be induced by compressive strain, and the critical point is about 0.95 strain. That is to say that a 2D piezoelectric antiferromagnetism (PAFM) can be achieved by compressive strain, and the corresponding $d_{22}$ and $d_{31}$ are 0.677 pm/V and 0.999 pm/V at 0.94 strain, respectively.
The realization of multifunctional two-dimensional (2D) materials is fundamentally intriguing, such as combination of piezoelectricity with topological insulating phase or ferromagnetism. In this work, a Janus monolayer $mathrm{SrAlGaSe_4}$ is built
A two-dimensional (2D) material with piezoelectricity, topological and ferromagnetic (FM) orders, namely 2D piezoelectric quantum anomalous hall insulator (PQAHI), may open new opportunities to realize novel physics and applications. Here, by first-p
Graphite-like carbon nitride (g-$mathrm{C_3N_4}$) is considered as a promising candidate for energy materials. In this work, the biaxial strain (-4%-4%) effects on piezoelectric properties of g-$mathrm{C_3N_4}$ monolayer are studied by density functi
The bulk piezoelectric response, as measured by the piezoelectric modulus tensor (textbf{d}), is determined by a combination of charge redistribution due to strain and the amount of strain produced by the application of stress (stiffness). Motivated
We provide a detailed insight into piezoelectric energy generation from arrays of polymer nanofibers. For sake of comparison, we firstly measure individual poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFe)) fibers at well-defined levels of c