ﻻ يوجد ملخص باللغة العربية
Graphite-like carbon nitride (g-$mathrm{C_3N_4}$) is considered as a promising candidate for energy materials. In this work, the biaxial strain (-4%-4%) effects on piezoelectric properties of g-$mathrm{C_3N_4}$ monolayer are studied by density functional theory (DFT). It is found that the increasing strain can reduce the elastic coefficient $C_{11}$-$C_{12}$, and increases piezoelectric stress coefficient $e_{11}$, which lead to the enhanced piezoelectric strain coefficient $d_{11}$. Compared to unstrained one, strain of 4% can raise the $d_{11}$ by about 330%. From -4% to 4%, strain can induce the improved ionic contribution to $e_{11}$ of g-$mathrm{C_3N_4}$, and almost unchanged electronic contribution, which is different from $mathrm{MoS_2}$ monolayer (the enhanced electronic contribution and reduced ionic contribution). To prohibit current leakage, a piezoelectric material should be a semiconductor, and g-$mathrm{C_3N_4}$ monolayer is always a semiconductor in considered strain range. Calculated results show that the gap increases from compressive strain to tensile one. At 4% strain, the first and second valence bands cross, which has important effect on transition dipole moment (TDM). Our works provide a strategy to achieve enhanced piezoelectric effect of g-$mathrm{C_3N_4}$ monolayer, which gives a useful guidence for developing efficient energy conversion devices.
Experimentally synthesized $mathrm{MoSi_2N_4}$ (textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020)}) is a piezoelectric semiconductor. Here, we systematically study the large biaxial (isotropic) strain effects (0.90 to 1.10) on electronic str
A two-dimensional (2D) material system with both piezoelectricity and ferromagnetic (FM) order, referred to as a 2D piezoelectric ferromagnetism (PFM), may open up unprecedented opportunities for intriguing physics. Inspired by experimentally synthes
The realization of multifunctional two-dimensional (2D) materials is fundamentally intriguing, such as combination of piezoelectricity with topological insulating phase or ferromagnetism. In this work, a Janus monolayer $mathrm{SrAlGaSe_4}$ is built
The septuple-atomic-layer $mathrm{VSi_2P_4}$ with the same structure of experimentally synthesized $mathrm{MoSi_2N_4}$ is predicted to be a spin-gapless semiconductor (SGS). In this work, the biaxial strain is applied to tune electronic properties of
A two-dimensional (2D) material with piezoelectricity, topological and ferromagnetic (FM) orders, namely 2D piezoelectric quantum anomalous hall insulator (PQAHI), may open new opportunities to realize novel physics and applications. Here, by first-p