ﻻ يوجد ملخص باللغة العربية
Activity and self-generated motion are fundamental features observed in many living and non-living systems. Given that inter-particle adhesive forces are known to regulate particle dynamics, we investigate how adhesion strength controls the boundary growth and roughness in an active particle aggregate. Using particle based simulations incorporating both activity (birth, death and growth) and systematic physical interactions (elasticity and adhesion), we establish that inter-particle adhesion strength ($f^{ad}$) controls the surface roughness of a densely packed three-dimensional(3D) active particle aggregate expanding into a highly viscous medium. We discover that the surface roughness of a 3D active particle aggregate increases in proportion to the inter-particle adhesion strength, $f^{ad}$. We show that asymmetry in the radial and tangential active particle mean squared displacement (MSD) suppresses 3D surface roughness at lower adhesion strengths. By analyzing the statistical properties of particle displacements at the aggregate periphery, we determine that the 3D surface roughness is driven by the movement of active particle towards the core at high inter-particle adhesion strengths. Our results elucidate the physics controlling the expansion of adhesive 3D active particle collectives into a highly viscous medium, with implications into understanding stochastic interface growth in active matter systems characterized by self generated particle flux.
It is known that mechanical interactions couple a cell to its neighbors, enabling a feedback loop to regulate tissue growth. However, the interplay between cell-cell adhesion strength, local cell density and force fluctuations in regulating cell prol
A mechanistic understanding of adhesion in soft materials is critical in the fields of transportation (tires, gaskets, seals), biomaterials, micro-contact printing, and soft robotics. Measurements have long demonstrated that the apparent work of adhe
When a block made of an elastomer is subjected to large shear, its surface remains flat. When a block of biological soft tissue is subjected to large shear, it is likely that its surface in the plane of shear will buckle (apparition of wrinkles). One
We develop a minimal model to describe growing dense active matter such as biological tissues, bacterial colonies and biofilms, that are driven by a competition between particle division and steric repulsion. We provide a detailed numerical analysis
Collective behaviour in suspensions of microswimmers is often dominated by the impact of long-ranged hydrodynamic interactions. These phenomena include active turbulence, where suspensions of pusher bacteria at sufficient densities exhibit large-scal