ﻻ يوجد ملخص باللغة العربية
An analytical model for the domain wall structure in ultrathin films with perpendicular easy axis and interfacial Dzyaloshinskii-Moriya interaction, submitted to an arbitrary in-plane magnetic field, is presented. Its solution is simplified to the numerical minimization of an analytic function of just one variable. The model predictions are compared to numerical micromagnetic simulations, using parameters of existing samples, revealing a very good agreement. Remaining differences are analyzed, and partly corrected. Differences with the predictions of the simplest model, usually found in the literature, in which only the domain wall moments in-plane orientation can vary, are exemplified. The model allows accurate computations, as a function of in-plane field module and orientation, of the domain wall tension and width, quantities controlling the creep motion of domain walls in such films.
The control of domain walls is central to nearly all magnetic technologies, particularly for information storage and spintronics. Creative attempts to increase storage density need to overcome volatility due to thermal fluctuations of nanoscopic doma
The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall (DW) is a topological objec
Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function of an external in plane magnetic field. T
We show that chiral symmetry breaking enables traveling domain wall solution for the conservative Landau-Lifshitz equation of a uniaxial ferromagnet with Dzyaloshinskii-Moriya interaction. In contrast to related domain wall models including stray-fie
The electronic orders in magnetic and dielectric materials form the domains with different signs of order parameters. The control of configuration and motion of the domain walls (DWs) enables gigantic, nonvolatile responses against minute external fi