ترغب بنشر مسار تعليمي؟ اضغط هنا

Traveling domain walls in chiral ferromagnets

121   0   0.0 ( 0 )
 نشر من قبل S. Komineas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that chiral symmetry breaking enables traveling domain wall solution for the conservative Landau-Lifshitz equation of a uniaxial ferromagnet with Dzyaloshinskii-Moriya interaction. In contrast to related domain wall models including stray-field based anisotropy, traveling wave solutions are not found in closed form. For the construction we follow a topological approach and provide details of solutions by means of numerical calculations.



قيم البحث

اقرأ أيضاً

Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function of an external in plane magnetic field. T his is understood as a consequence of the inversion asymmetry of the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. Numerous attempts have been made to explain these observations using creep theory, but, in doing so, these have not included all contributions to the domain wall energy or have introduced additional free parameters. In this article we present a theory for creep motion of chiral domain walls in the creep regime that includes the most important contributions to the domain-wall energy and does not introduce new free parameters beyond the usual parameters that are included in the micromagnetic energy. Furthermore, we present experimental measurements of domain wall velocities as a function of in-plane field that are well decribed by our model, and from which material properties such as the strength of the Dzyaloshinskii-Moriya interaction and the demagnetization field are extracted.
We studied the quantum dynamics of ferromagnetic domain walls (topological kink-type solitons) in one dimensional ferromagnetic spin chains. We show that the tunneling probability does not depend on the number of spins in a domain wall; thus, this pr obability can be large even for a domain wall containing a large number of spins. We also predict that there is a strong interplay between the tunneling of a wall from one lattice site to another (tunneling of the kink coordinate) and the tunneling of the kink topological charge (so-called chirality). Both of these elementary processes are suppressed for kinks in one-dimensional ferromagnets with half-integer spin. The dispersion law (i.e., the domain wall energy versus momentum) is essentially different for chains with either integer or half-integer spins. The predicted quantum effects could be observed for mesoscopic magnetic structures, e.g., chains of magnetic clusters, large-spin molecules, or nanosize magnetic dots.
The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or Neel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed Neel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current.
The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall (DW) is a topological objec t that has been observed to follow this behavior. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii-Moriya (DM) exchange constant. The time needed to accelerate a DW with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the DM exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral DWs. Such unique feature of chiral DWs can be utilized to move and position DWs with lower current, key to the development of storage class memory devices.
139 - M. C. Depassier 2015
Recent analytical and numerical work on field driven domain wall propagation in nanowires has shown that for large transverse anisotropy and sufficiently large applied fields the Walker profile becomes unstable before the breakdown field, giving way to a slower stationary domain wall. We perform an asymptotic expansion of the Landau Lifshitz Gilbert equation for large transverse magnetic anisotropy and show that the asymptotic dynamics reproduces this behavior. At low applied field the speed increases linearly with the field and the profile is the classic Landau profile. Beyond a critical value of the applied field the domain wall slows down. The appearance of a slower domain wall profile in the asymptotic dynamics is due to a transition from a pushed to a pulled front of a reaction diffusion equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا