ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure Prediction of Epitaxial Inorganic Interfaces by Lattice and Surface Matching with Ogre

84   0   0.0 ( 0 )
 نشر من قبل Saeed Moayedpour
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new version of the Ogre open source Python package with the capability to perform structure prediction of epitaxial inorganic interfaces by lattice and surface matching. In the lattice matching step a scan over combinations of substrate and film Miller indices is performed to identify the domain-matched interfaces with the lowest mismatch. Subsequently, surface matching is conducted by Bayesian optimization to find the optimal interfacial distance and in-plane registry between the substrate and film. For the objective function, a geometric score function is proposed, based on the overlap and empty space between atomic spheres at the interface. The score function reproduces the results of density functional theory (DFT) at a fraction of the computational cost. The optimized interfaces are pre-ranked using a score function based on the similarity of the atomic environment at the interface to the bulk environment. Final ranking of the top candidate structures is performed with DFT. Ogre streamlines DFT calculations of interface energies and electronic properties by automating the construction of interface models. The application of Ogre is demonstrated for two interfaces of interest for quantum computing and spintronics, Al/InAs and Fe/InSb.



قيم البحث

اقرأ أيضاً

Harnessing the recent advance in data science and materials science, it is feasible today to build predictive models for materials properties. In this study, we employ the data of high-throughput quantum mechanics calculations based on 170,714 inorga nic crystalline compounds to train a machine learning model for formation energy prediction. Different from the previous work, our model reaches a fairly good predictive ability (R2=0.982 and MAE=0.07 eVatom-1, DenseNet model) and meanwhile can be universally applied to the large phase space of inorganic materials. The improvement comes from several effective structure-dependent descriptors that are proposed to take the information of electronegativity and structure into account. This model can provide a useful tool to search for new materials in a vast phase space in a fast and cost-effective manner.
Lattice constants such as unit cell edge lengths and plane angles are important parameters of the periodic structures of crystal materials. Predicting crystal lattice constants has wide applications in crystal structure prediction and materials prope rty prediction. Previous work has used machine learning models such as neural networks and support vector machines combined with composition features for lattice constant prediction and has achieved a maximum performance for cubic structures with an average $R^2$ of 0.82. Other models tailored for special materials family of a fixed form such as ABX3 perovskites can achieve much higher performance due to the homogeneity of the structures. However, these models trained with small datasets are usually not applicable to generic lattice parameter prediction of materials with diverse compositions. Herein, we report MLatticeABC, a random forest machine learning model with a new descriptor set for lattice unit cell edge length ($a,b,c$) prediction which achieves an R2 score of 0.979 for lattice parameter $a$ of cubic crystals and significant performance improvement for other crystal systems as well. Source code and trained models can be freely accessed at https://github.com/usccolumbia/MLatticeABC
Ab initio structure prediction methods have been nowadays widely used as powerful tools for structure searches and material discovery. However, they are generally restricted to small systems owing to the heavy computational cost of underlying density functional theory (DFT) calculations. In this work, by combining state-of-art machine learning (ML) potential with our in-house developed CALYPSO structure prediction method, we developed two acceleration schemes for structure prediction toward large systems, in which ML potential is pre-constructed to fully replace DFT calculations or trained in an on-the-fly manner from scratch during the structure searches. The developed schemes have been applied to medium- and large-sized boron clusters, which are challenging cases for both construction of ML potentials and extensive structure searches. Experimental structures of B36 and B40 clusters can be readily reproduced, and the putative global minimum structure for B84 cluster is proposed, where substantially less computational cost by several orders of magnitude is evident if compared with full DFT-based structure searches. Our results demonstrate a viable route for structure prediction toward large systems via the combination of state-of-art structure prediction methods and ML techniques.
Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field and local proximitized magnetic exchange. In this work, we present lattice matched hybrid epitaxy of s emiconductor - ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure as well as their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the bandgap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs. Induced moments in the adjacent InAs layers were not detected although our ab initio calculations indicate a small exchange field in the InAs layer. This work presents a step towards realizing high quality semiconductor - ferromagnetic insulator hybrids, which is a critical requirement for development of various quantum and spintronic applications without external magnetic fields.
Crystal structure prediction is now playing an increasingly important role in discovery of new materials. Global optimization methods such as genetic algorithms (GA) and particle swarm optimization (PSO) have been combined with first principle free e nergy calculations to predict crystal structures given composition or only a chemical system. While these approaches can exploit certain crystal patterns such as symmetry and periodicity in their search process, they usually do not exploit the large amount of implicit rules and constraints of atom configurations embodied in the large number of known crystal structures. They currently can only handle crystal structure prediction of relatively small systems. Inspired by the knowledge-rich protein structure prediction approach, herein we explore whether known geometric constraints such as the atomic contact map of a target crystal material can help predict its structure given its space group information. We propose a global optimization based algorithm, CMCrystal, for crystal structure reconstruction based on atomic contact maps. Based on extensive experiments using six global optimization algorithms, we show that it is viable to reconstruct the crystal structure given the atomic contact map for some crystal materials but more constraints are needed for other target materials to achieve successful reconstruction. This implies that atomic interaction information learned from existing materials can be used to improve crystal structure prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا