ترغب بنشر مسار تعليمي؟ اضغط هنا

MLatticeABC: Generic Lattice Constant Prediction of Crystal Materials using Machine Learning

177   0   0.0 ( 0 )
 نشر من قبل Jianjun Hu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lattice constants such as unit cell edge lengths and plane angles are important parameters of the periodic structures of crystal materials. Predicting crystal lattice constants has wide applications in crystal structure prediction and materials property prediction. Previous work has used machine learning models such as neural networks and support vector machines combined with composition features for lattice constant prediction and has achieved a maximum performance for cubic structures with an average $R^2$ of 0.82. Other models tailored for special materials family of a fixed form such as ABX3 perovskites can achieve much higher performance due to the homogeneity of the structures. However, these models trained with small datasets are usually not applicable to generic lattice parameter prediction of materials with diverse compositions. Herein, we report MLatticeABC, a random forest machine learning model with a new descriptor set for lattice unit cell edge length ($a,b,c$) prediction which achieves an R2 score of 0.979 for lattice parameter $a$ of cubic crystals and significant performance improvement for other crystal systems as well. Source code and trained models can be freely accessed at https://github.com/usccolumbia/MLatticeABC



قيم البحث

اقرأ أيضاً

Geometric information such as the space groups and crystal systems plays an important role in the properties of crystal materials. Prediction of crystal system and space group thus has wide applications in crystal material property estimation and str ucture prediction. Previous works on experimental X-ray diffraction (XRD) and density functional theory (DFT) based structure determination methods achieved outstanding performance, but they are not applicable for large-scale screening of materials compositions. There are also machine learning models using Magpie descriptors for composition based material space group determination, but their prediction accuracy only ranges between 0.638 and 0.907 in different kinds of crystals. Herein, we report an improved machine learning model for predicting the crystal system and space group of materials using only the formula information. Benchmark study on a dataset downloaded from Materials Project Database shows that our random forest models based on our new descriptor set, achieve significant performance improvements compared with previous work with accuracy scores ranging between 0.712 and 0.961 in terms of space group classification. Our model also shows large performance improvement for crystal system prediction. Trained models and source code are freely available at url{https://github.com/Yuxinya/SG_predict}
Machine learning technologies are expected to be great tools for scientific discoveries. In particular, materials development (which has brought a lot of innovation by finding new and better functional materials) is one of the most attractive scienti fic fields. To apply machine learning to actual materials development, collaboration between scientists and machine learning is becoming inevitable. However, such collaboration has been restricted so far due to black box machine learning, in which it is difficult for scientists to interpret the data-driven model from the viewpoint of material science and physics. Here, we show a material development success story that was achieved by good collaboration between scientists and one type of interpretable (explainable) machine learning called factorized asymptotic Bayesian inference hierarchical mixture of experts (FAB/HMEs). Based on material science and physics, we interpreted the data-driven model constructed by the FAB/HMEs, so that we discovered surprising correlation and knowledge about thermoelectric material. Guided by this, we carried out actual material synthesis that led to identification of a novel spin-driven thermoelectric material with the largest thermopower to date.
We propose an approach for exploiting machine learning to approximate electronic fields in crystalline solids subjected to deformation. Strain engineering is emerging as a widely used method for tuning the properties of materials, and this requires r epeated density functional theory calculations of the unit cell subjected to strain. Repeated unit cell calculations are also required for multi-resolution studies of defects in crystalline solids. We propose an approach that uses data from such calculations to train a carefully architected machine learning approximation. We demonstrate the approach on magnesium, a promising light-weight structural material: we show that we can predict the energy and electronic fields to the level of chemical accuracy, and even capture lattice instabilities.
A subcritical load on a disordered material can induce creep damage. The creep rate in this case exhibits three temporal regimes viz. an initial decelerating regime followed by a steady-state regime and a stage of accelerating creep that ultimately l eads to catastrophic breakdown. Due to the statistical regularities in the creep rate, the time evolution of creep rate has often been used to predict residual lifetime until catastrophic breakdown. However, in disordered samples, these efforts met with limited success. Nevertheless, it is clear that as the failure is approached, the damage become increasingly spatially correlated, and the spatio-temporal patterns of acoustic emission, which serve as a proxy for damage accumulation activity, are likely to mirror such correlations. However, due to the high dimensionality of the data and the complex nature of the correlations it is not straightforward to identify the said correlations and thereby the precursory signals of failure. Here we use supervised machine learning to estimate the remaining time to failure of samples of disordered materials. The machine learning algorithm uses as input the temporal signal provided by a mesoscale elastoplastic model for the evolution of creep damage in disordered solids. Machine learning algorithms are well-suited for assessing the proximity to failure from the time series of the acoustic emissions of sheared samples. We show that materials are relatively more predictable for higher disorder while are relatively less predictable for larger system sizes. We find that machine learning predictions, in the vast majority of cases, perform substantially better than other prediction approaches proposed in the literature.
Crystal structure prediction is now playing an increasingly important role in discovery of new materials. Global optimization methods such as genetic algorithms (GA) and particle swarm optimization (PSO) have been combined with first principle free e nergy calculations to predict crystal structures given composition or only a chemical system. While these approaches can exploit certain crystal patterns such as symmetry and periodicity in their search process, they usually do not exploit the large amount of implicit rules and constraints of atom configurations embodied in the large number of known crystal structures. They currently can only handle crystal structure prediction of relatively small systems. Inspired by the knowledge-rich protein structure prediction approach, herein we explore whether known geometric constraints such as the atomic contact map of a target crystal material can help predict its structure given its space group information. We propose a global optimization based algorithm, CMCrystal, for crystal structure reconstruction based on atomic contact maps. Based on extensive experiments using six global optimization algorithms, we show that it is viable to reconstruct the crystal structure given the atomic contact map for some crystal materials but more constraints are needed for other target materials to achieve successful reconstruction. This implies that atomic interaction information learned from existing materials can be used to improve crystal structure prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا