ﻻ يوجد ملخص باللغة العربية
Do negative absolute temperatures matter physics and specifically Statistical Physics? We provide evidence that we can certainly answer positively to this vexata quaestio. The great majority of models investigated by statistical mechanics over almost one century and a half exhibit positive absolute temperature, because their entropy is a nondecreasing function of energy. Since more than half a century ago it has been realized that this may not be the case for some physical systems as incompressible fluids, nuclear magnetic chains, lasers, cold atoms and optical waveguides. We review these examples and discuss their peculiar thermodynamic properties, which have been associated to the presence of thermodynamic regimes, characterized by negative absolute temperatures. As reported in this review, the ambiguity inherent the definition of entropy has recurrently raised a harsh debate about the possibility of considering negative temperature states as genuine thermodynamic equilibrium ones. Here we show that negative absolute temperatures are consistent with equilibrium as well as with non-equilibrium thermodynamics. In particular, thermometry, thermodynamics of cyclic transformations, ensemble equivalence, fluctuation-dissipation relations, response theory and even transport processes can be reformulated to include them, thus dissipating any prejudice about their exceptionality, typically presumed as a manifestation of transient metastable effects.
The statistical mechanics of periodically driven (Floquet) systems in contact with a heat bath exhibits some radical differences from the traditional statistical mechanics of undriven systems. In Floquet systems all quasienergies can be placed in a f
Recently, we have presented some simple arguments supporting the existence of certain complementarity between thermodynamic quantities of temperature and energy, an idea suggested by Bohr and Heinsenberg in the early days of Quantum Mechanics. Such a
The local equilibrium approach previously developed by the Authors [J. Mabillard and P. Gaspard, J. Stat. Mech. (2020) 103203] for matter with broken symmetries is applied to crystalline solids. The macroscopic hydrodynamics of crystals and their loc
We address the statistical mechanics of randomly and permanently crosslinked networks. We develop a theoretical framework (vulcanization theory) which can be used to systematically analyze the correlation between the statistical properties of random
We provide here an explicit example of Khinchins idea that the validity of equilibrium statistical mechanics in high dimensional systems does not depend on the details of the dynamics. This point of view is supported by extensive numerical simulation