ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainty relations of Statistical Mechanics

168   0   0.0 ( 0 )
 نشر من قبل Luisberis Velazquez-Abad
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, we have presented some simple arguments supporting the existence of certain complementarity between thermodynamic quantities of temperature and energy, an idea suggested by Bohr and Heinsenberg in the early days of Quantum Mechanics. Such a complementarity is expressed as the impossibility of perform an exact simultaneous determination of the system energy and temperature by using an experimental procedure based on the thermal equilibrium with other system regarded as a measure apparatus (thermometer). In this work, we provide a simple generalization of this latter approach with the consideration of a thermodynamic situation with several control parameters.



قيم البحث

اقرأ أيضاً

The local equilibrium approach previously developed by the Authors [J. Mabillard and P. Gaspard, J. Stat. Mech. (2020) 103203] for matter with broken symmetries is applied to crystalline solids. The macroscopic hydrodynamics of crystals and their loc al thermodynamic and transport properties are deduced from the microscopic Hamiltonian dynamics. In particular, the Green-Kubo formulas are obtained for all the transport coefficients. The eight hydrodynamic modes and their dispersion relation are studied for general and cubic crystals. In the same twenty crystallographic classes as those compatible with piezoelectricity, cross effects coupling transport between linear momentum and heat or crystalline order are shown to split the degeneracy of damping rates for modes propagating in opposite generic directions.
We introduce a new technique to bound the fluctuations exhibited by a physical system, based on the Euclidean geometry of the space of observables. Through a simple unifying argument, we derive a sweeping generalization of so-called Thermodynamic Unc ertainty Relations (TURs). We not only strengthen the bounds but extend their realm of applicability and in many cases prove their optimality, without resorting to large deviation theory or information-theoretic techniques. In particular, we find the best TUR based on entropy production alone and also derive a novel bound for stationary Markov processes, which surpasses previous known bounds. Our results derive from the non-invariance of the system under a symmetry which can be other than time reversal and thus open a wide new spectrum of applications.
We provide here an explicit example of Khinchins idea that the validity of equilibrium statistical mechanics in high dimensional systems does not depend on the details of the dynamics. This point of view is supported by extensive numerical simulation of the one-dimensional Toda chain, an integrable non-linear Hamiltonian system where all Lyapunov exponents are zero by definition. We study the relaxation to equilibrium starting from very atypical initial conditions and focusing on energy equipartion among Fourier modes, as done in the original Fermi-Pasta-Ulam-Tsingou numerical experiment. We find evidence that in the general case, i.e., not in the perturbative regime where Toda and Fourier modes are close to each other, there is a fast reaching of thermal equilibrium in terms of a single temperature. We also find that equilibrium fluctuations, in particular the behaviour of specific heat as function of temperature, are in agreement with analytic predictions drawn from the ordinary Gibbs ensemble, still having no conflict with the established validity of the Generalized Gibbs Ensemble for the Toda model. Our results suggest thus that even an integrable Hamiltonian system reaches thermalization on the constant energy hypersurface, provided that the considered observables do not strongly depend on one or few of the conserved quantities. This suggests that dynamical chaos is irrelevant for thermalization in the large-$N$ limit, where any macroscopic observable reads of as a collective variable with respect to the coordinate which diagonalize the Hamiltonian. The possibility for our results to be relevant for the problem of thermalization in generic quantum systems, i.e., non-integrable ones, is commented at the end.
61 - I. Farkas , I. Derenyi , G. Palla 2004
In this article we give an in depth overview of the recent advances in the field of equilibrium networks. After outlining this topic, we provide a novel way of defining equilibrium graph (network) ensembles. We illustrate this concept on the classica l random graph model and then survey a large variety of recently studied network models. Next, we analyze the structural properties of the graphs in these ensembles in terms of both local and global characteristics, such as degrees, degree-degree correlations, component sizes, and spectral properties. We conclude with topological phase transitions and show examples for both continuous and discontinuous transitions.
94 - P. Kozlowski , M. Marsili 2003
The majority game, modelling a system of heterogeneous agents trying to behave in a similar way, is introduced and studied using methods of statistical mechanics. The stationary states of the game are given by the (local) minima of a particular Hopfi eld like hamiltonian. On the basis of a replica symmetric calculations, we draw the phase diagram, which contains the analog of a retrieval phase. The number of metastable states is estimated using the annealed approximation. The results are confronted with extensive numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا