ترغب بنشر مسار تعليمي؟ اضغط هنا

Intensity-corrected 4D light-in-flight imaging

65   0   0.0 ( 0 )
 نشر من قبل Imogen Morland
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light-in-flight (LIF) imaging is the measurement and reconstruction of lights path as it moves and interacts with objects. It is well known that relativistic effects can result in apparent velocities that differ significantly from the speed of light. However, less well known is that Rayleigh scattering and the effects of imaging optics can lead to observed intensities changing by several orders of magnitude along lights path. We develop a model that enables us to correct for all of these effects, thus we can accurately invert the observed data and reconstruct the true intensity-corrected optical path of a laser pulse as it travels in air. We demonstrate the validity of our model by observing the photon arrival time and intensity distribution obtained from single-photon avalanche detector (SPAD) array data for a laser pulse propagating towards and away from the camera. We can then reconstruct the true intensity-corrected path of the light in four dimensions (three spatial dimensions and time).



قيم البحث

اقرأ أيضاً

Slow-light media are of interest in the context of quantum computing and enhanced measurement of quantum effects, with particular emphasis on using slow-light with single photons. We use light-in-flight imaging with a single photon avalanche diode ca mera-array to image in situ pulse propagation through a slow light medium consisting of heated rubidium vapour. Light-in-flight imaging of slow light propagation enables direct visualisation of a series of physical effects including simultaneous observation of spatial pulse compression and temporal pulse dispersion. Additionally, the single-photon nature of the camera allows for observation of the group velocity of single photons with measured single-photon fractional delays greater than 1 over 1 cm of propagation.
Purpose: To develop a MRI acquisition and reconstruction framework for volumetric cine visualisation of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods: Four-dimensional depiction was achieved using a highly- accelerated multi-planar real-time balanced steady state free precession acquisition combined with retrospective image-domain techniques for motion correction, cardiac synchronisation and outlier rejection. The framework was evaluated and optimised using a numerical phantom, and evaluated in a study of 20 mid- to late-gestational age human fetal subjects. Reconstructed cine volumes were evaluated by experienced cardiologists and compared with matched ultrasound. A preliminary assessment of flow-sensitive reconstruction using the velocity information encoded in the phase of dynamic images is included. Results: Reconstructed cine volumes could be visualised in any 2D plane without the need for highly-specific scan plane prescription prior to acquisition or for maternal breath hold to minimise motion. Reconstruction was fully automated aside from user-specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Expert evaluation suggested the reconstructed volumes can be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusion: The proposed methods show promise as a framework for motion-compensated 4D assessment of the fetal heart and great vessels.
In traditional Hanbury Brown and Twiss (HBT) schemes, the thermal intensity-intensity correlations are phase insensitive. Here we propose a modified HBT scheme with phase conjugation to demonstrate the phase-sensitive and nonfactorizable features for thermal intensity-intensity correlation speckle. Our scheme leads to results that are similar to those of the two-photon speckle. We discuss the possibility of the experimental realization. The results provide us a deeper insight of the thermal correlations and may lead to more significant applications in imaging and speckle technologies.
140 - Daan Stellinga 2021
Time-of-flight (ToF) 3D imaging has a wealth of applications, from industrial inspection to movement tracking and gesture recognition. Depth information is recovered by measuring the round-trip flight time of laser pulses, which usually requires proj ection and collection optics with diameters of several centimetres. In this work we shrink this requirement by two orders of magnitude, and demonstrate near video-rate 3D imaging through multimode optical fibres (MMFs) - the width of a strand of human hair. Unlike conventional imaging systems, MMFs exhibit exceptionally complex light transport resembling that of a highly scattering medium. To overcome this complication, we implement high-speed aberration correction using wavefront shaping synchronised with a pulsed laser source, enabling random-access scanning of the scene at a rate of $sim$23,000 points per second. Using non-ballistic light we image moving objects several metres beyond the end of a $sim$40 cm long MMF of 50$mu$m core diameter, with millimetric depth resolution, at frame-rates of $sim$5Hz. Our work extends far-field depth resolving capabilities to ultra-thin micro-endoscopes, and will have a broad range of applications to clinical and remote inspection scenarios.
212 - Yuchen He , Yuan Yuan , Hui Chen 2021
As a promising lensless imaging method for distance objects, intensity interferometry imaging (III) had been suffering from the unreliable phase retrieval process, hindering the development of III for decades. Recently, the introduction of the ptycho graphic detection in III overcame this challenge, and a method called ptychographic III (PIII) was proposed. We here experimentally demonstrate that PIII can image a dynamic distance object. A reasonable image for the moving object can be retrieved with only two speckle patterns for each probe, and only 10 to 20 iterations are needed. Meanwhile, PIII exhibits robust to the inaccurate information of the probe. Furthermore, PIII successfully recovers the image through a fog obfuscating the imaging light path, under which a conventional camera relying on lenses fails to provide a recognizable image.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا