ترغب بنشر مسار تعليمي؟ اضغط هنا

A Security Reference Architecture for Blockchains

69   0   0.0 ( 0 )
 نشر من قبل Ivan Homoliak
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to their interesting features, blockchains have become popular in recent years. They are full-stack systems where security is a critical factor for their success. The main focus of this work is to systematize knowledge about security and privacy issues of blockchains. To this end, we propose a security reference architecture based on models that demonstrate the stacked hierarchy of various threats (similar to the ISO/OSI hierarchy) as well as threat-risk assessment using ISO/IEC 15408. In contrast to the previous surveys, we focus on the categorization of security incidents based on their origins and using the proposed architecture we present existing prevention and mitigation techniques. The scope of our work mainly covers aspects related to the decentralized nature of blockchains, while we mention common operational security issues and countermeasures only tangentially.



قيم البحث

اقرأ أيضاً

Blockchains are distributed systems, in which security is a critical factor for their success. However, despite their increasing popularity and adoption, there is a lack of standardized models that study blockchain-related security threats. To fill t his gap, the main focus of our work is to systematize and extend the knowledge about the security and privacy aspects of blockchains and contribute to the standardization of this domain. We propose the security reference architecture (SRA) for blockchains, which adopts a stacked model (similar to the ISO/OSI) describing the nature and hierarchy of various security and privacy aspects. The SRA contains four layers: (1) the network layer, (2) the consensus layer, (3) the replicated state machine layer, and (4) the application layer. At each of these layers, we identify known security threats, their origin, and countermeasures, while we also analyze several cross-layer dependencies. Next, to enable better reasoning about security aspects of blockchains by the practitioners, we propose a blockchain-specific version of the threat-risk assessment standard ISO/IEC 15408 by embedding the stacked model into this standard. Finally, we provide designers of blockchain platforms and applications with a design methodology following the model of SRA and its hierarchy.
124 - Rui Zhang , Rui Xue , Ling Liu 2021
Healthcare blockchains provide an innovative way to store healthcare information, execute healthcare transactions, and build trust for healthcare data sharing and data integration in a decentralized open healthcare network environment. Although the h ealthcare blockchain technology has attracted broad interests and attention in industry, government and academia, the security and privacy concerns remain the focus of debate when deploying blockchains for information sharing in the healthcare sector from business operation to research collaboration. This paper focuses on the security and privacy requirements for medical data sharing using blockchain, and provides a comprehensive analysis of the security and privacy risks and requirements, accompanied by technical solution techniques and strategies. First, we discuss the security and privacy requirements and attributes required for electronic medical data sharing by deploying the healthcare blockchain. Second, we categorize existing efforts into three reference blockchain usage scenarios for electronic medical data sharing, and discuss the technologies for implementing these security and privacy properties in the three categories of usage scenarios for healthcare blockchain, such as anonymous signatures, attribute-based encryption, zero-knowledge proofs, verification techniques for smart contract security. Finally, we discuss other potential blockchain application scenarios in healthcare sector. We conjecture that this survey will help healthcare professionals, decision makers, and healthcare service developers to gain technical and intuitive insights into the security and privacy of healthcare blockchains in terms of concepts, risks, requirements, development and deployment technologies and systems.
The advancement in the healthcare sector is entering into a new era in the form of Health 4.0. The integration of innovative technologies like Cyber-Physical Systems (CPS), Big Data, Cloud Computing, Machine Learning, and Blockchain with Healthcare s ervices has led to improved performance and efficiency through data-based learning and interconnection of systems. On the other hand, it has also increased complexities and has brought its own share of vulnerabilities due to the heavy influx, sharing, and storage of healthcare data. The protection of the same from cyber-attacks along with privacy preservation through authenticated access is one of the significant challenges for the healthcare sector. For this purpose, the use of blockchain-based networks can lead to a considerable reduction in the vulnerabilities of the healthcare systems and secure their data. This chapter explores blockchains role in strengthening healthcare data security by answering the questions related to what data use, when we need, why we need, who needs, and how state-of-the-art techniques use blockchains to secure healthcare data. As a case study, we also explore and analyze the state-of-the-art implementations for blockchain in healthcare data security for the COVID-19 pandemic. In order to provide a path to future research directions, we identify and discuss the technical limitations and regulatory challenges associated with blockchain-based healthcare data security implementation.
84 - Swanand Kadhe , Jichan Chung , 2019
Full nodes, which synchronize the entire blockchain history and independently validate all the blocks, form the backbone of any blockchain network by playing a vital role in ensuring security properties. On the other hand, a user running a full node needs to pay a heavy price in terms of storage costs. E.g., the Bitcoin blockchain size has grown over 215GB, in spite of its low throughput. The ledger size for a high throughput blockchain Ripple has already reached 9TB, and it is growing at an astonishing rate of 12GB per day! In this paper, we propose an architecture based on fountain codes, a class of erasure codes, that enables any full node to encode validated blocks into a small number of coded blocks, thereby reducing its storage costs by orders of magnitude. In particular, our proposed Secure Fountain (SeF) architecture can achieve a near-optimal trade-off between the storage savings per node and the bootstrap cost in terms of the number of (honest) storage-constrained nodes a new node needs to contact to recover the blockchain. A key technical innovation in SeF codes is to make fountain codes secure against adversarial nodes that can provide maliciously formed coded blocks. Our idea is to use the header-chain as a side-information to check whether a coded block is maliciously formed while it is getting decoded. Further, the rateless property of fountain codes helps in achieving high decentralization and scalability. Our experiments demonstrate that SeF codes tuned to achieve 1000x storage savings enable full nodes to encode the 191GB Bitcoin blockchain into 195MB on average. A new node can recover the blockchain from an arbitrary set of storage-constrained nodes as long as the set contains ~1100 honest nodes on average. Note that for a 1000x storage savings, the fundamental bound on the number of honest nodes to contact is 1000: we need about 10% more in practice.
As networks expand in size and complexity, they pose greater administrative and management challenges. Software Defined Networks (SDN) offer a promising approach to meeting some of these challenges. In this paper, we propose a policy driven security architecture for securing end to end services across multiple SDN domains. We develop a language based approach to design security policies that are relevant for securing SDN services and communications. We describe the policy language and its use in specifying security policies to control the flow of information in a multi-domain SDN. We demonstrate the specification of fine grained security policies based on a variety of attributes such as parameters associated with users and devices/switches, context information such as location and routing information, and services accessed in SDN as well as security attributes associated with the switches and Controllers in different domains. An important feature of our architecture is its ability to specify path and flow based security policies, which are significant for securing end to end services in SDNs. We describe the design and the implementation of our proposed policy based security architecture and demonstrate its use in scenarios involving both intra and inter-domain communications with multiple SDN Controllers. We analyse the performance characteristics of our architecture as well as discuss how our architecture is able to counteract various security attacks. The dynamic security policy based approach and the distribution of corresponding security capabilities intelligently as a service layer that enable flow based security enforcement and protection of multitude of network devices against attacks are important contributions of this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا