ترغب بنشر مسار تعليمي؟ اضغط هنا

Hamiltonian effective field theory in elongated or moving finite volume

104   0   0.0 ( 0 )
 نشر من قبل Yan Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend previous work concerning rest-frame partial-wave mixing in Hamiltonian effective field theory to both elongated and moving systems, where two particles are in a periodic elongated cube or have nonzero total momentum, respectively. We also consider the combination of the two systems when directions of the elongation and the moving momentum are aligned. This extension should also be applicable in any Hamiltonian formalism. As a demonstration, we analyze lattice QCD results for the spectrum of an isospin-2 $pipi$ scattering system and determine the $s$, $d$, and $g$ partial-wave scattering information. The inclusion of lattice simulation results from moving frames significantly improves the uncertainty in the scattering information.



قيم البحث

اقرأ أيضاً

In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the $KD^{(*)}$ systems, where t he states $D^*_{s0}(2317)$ and $D^*_{s1}(2460)$ are found as bound states of $KD$ and $KD^*$, respectively. We confirm the presence of such states in the lattice data and determine the contribution of the $KD$ channel in the wave function of $D^*_{s0}(2317)$ and that of $KD^*$ in the wave function of $D^*_{s1}(2460)$. Our findings indicate a large meson-meson component in the two cases.
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativi stic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
One of the more important systematic effects affecting lattice computations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_mu^{rm HVP}$, is the distortion due to a finite spatial volume. In order to reach sub-percent precision, these effects need to be reliably estimated and corrected for, and one of the methods that has been employed for doing this is finite-volume chiral perturbation theory. In this paper, we argue that finite-volume corrections to $a_mu^{rm HVP}$ can, in principle, be calculated at any given order in chiral perturbation theory. More precisely, once all low-energy constants needed to define the Effective Field Theory representation of $a_mu^{rm HVP}$ in infinite volume are known to a given order, also the finite-volume corrections can be predicted to that order in the chiral expansion.
The anti-kaon nucleon scattering lengths resulting from a Hamiltonian effective field theory analysis of experimental data and lattice QCD studies are presented. The same Hamiltonian is then used to compute the scattering length for the $K^- d$ syste m, taking careful account of the effects of recoil on the energy at which the $bar{K}N$ T-matrices are evaluated. These results are then used to estimate the shift and width of the $1S$ levels of anti-kaonic hydrogen and deuterium. The $K^- p$ result is in excellent agreement with the SIDDHARTA measurement. In the $K^- d$ case the imaginary part of the scattering length and consequently the width of the $1S$ state are considerably larger than found in earlier work. This is a consequence of the effect of recoil on the energy of the $bar{K}N$ energy, which enhances the role of the $Lambda(1405)$ resonance.
Pionless effective field theory in a finite volume (FVEFT$_{pi!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{pi!/}$ with the stochastic variati onal method, the spectra of nuclei with atomic number $Ain{2,3}$ are matched to existing finite-volume LQCD calculations at heavier-than-physical quark masses corresponding to a pion mass $m_pi=806$ MeV, thereby enabling infinite-volume binding energies to be determined using infinite-volume variational calculations. Based on the variational wavefunctions that are constructed in this approach, the finite-volume matrix elements of various local operators are computed in FVEFT$_{pi!/}$ and matched to LQCD calculations of the corresponding QCD operators in the same volume, thereby determining the relevant one and two-body EFT counterterms and enabling an extrapolation of the LQCD matrix elements to infinite volume. As examples, the scalar, tensor, and axial matrix elements are considered, as well as the magnetic moments and the isovector longitudinal momentum fraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا