ﻻ يوجد ملخص باللغة العربية
One of the more important systematic effects affecting lattice computations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_mu^{rm HVP}$, is the distortion due to a finite spatial volume. In order to reach sub-percent precision, these effects need to be reliably estimated and corrected for, and one of the methods that has been employed for doing this is finite-volume chiral perturbation theory. In this paper, we argue that finite-volume corrections to $a_mu^{rm HVP}$ can, in principle, be calculated at any given order in chiral perturbation theory. More precisely, once all low-energy constants needed to define the Effective Field Theory representation of $a_mu^{rm HVP}$ in infinite volume are known to a given order, also the finite-volume corrections can be predicted to that order in the chiral expansion.
The leading finite-volume and thermal effects, arising in numerical lattice QCD calculations of $a^{text{HVP,LO}}_mu equiv (g-2)^{text{HVP,LO}}_mu/2$, are determined to all orders with respect to the interactions of a generic, relativistic effective
In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the $KD^{(*)}$ systems, where t
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativi
We extend previous work concerning rest-frame partial-wave mixing in Hamiltonian effective field theory to both elongated and moving systems, where two particles are in a periodic elongated cube or have nonzero total momentum, respectively. We also c
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self energies are computed in a finite volume at next-to-next-to-next-to leading order (N$^3$LO), where the