ترغب بنشر مسار تعليمي؟ اضغط هنا

Heisenberg-limited quantum metrology using collective dephasing

335   0   0.0 ( 0 )
 نشر من قبل Shingo Kukita
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of quantum metrology is the precise estimation of parameters using quantum properties such as entanglement. This estimation usually consists of three steps: state preparation, time evolution during which information of the parameters is encoded in the state, and readout of the state. Decoherence during the time evolution typically degrades the performance of quantum metrology and is considered to be one of the major obstacles to realizing entanglement-enhanced sensing. We show, however, that under suitable conditions, this decoherence can be exploited to improve the sensitivity. Assume that we have two axes, and our aim is to estimate the relative angle between them. Our results reveal that the use of Markvoian collective dephasing to estimate the relative angle between the two directions affords Heisenberg-limited sensitivity. Moreover, our scheme based on Markvoian collective dephasing is robust against environmental noise, and it is possible to achieve the Heisenberg limit even under the effect of independent dephasing. Our counterintuitive results showing that the sensitivity is improved by using the decoherence pave the way to novel applications in quantum metrology.



قيم البحث

اقرأ أيضاً

566 - Roee Ozeri 2013
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detectio n. We show that using quantum error-correction codes a small signal can be measured with Heisenberg limited uncertainty even in the presence of noise. We analyze the limitations to the measurement of signals of interest and discuss two simple examples. The possibility of long coherence times, combined with their Heisenberg limited sensitivity to certain signals, pose quantum error-correction codes as a promising detection scheme.
84 - W. Wang , Y. Wu , Y. Ma 2019
Two-mode interferometers, such as Michelson interferometer based on two spatial optical modes, lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. However, the experimental demonstration still remains elusive. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form $left(left|0rightrangle +left|Nrightrangle right)/sqrt{2}$ are generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as $sim N^{-0.94}$. A $9.1$~$mathrm{dB}$ enhancement of the precision over the SNL at $N=12$, which is only $1.7$~$mathrm{dB}$ away from the HL, is achieved. Our experimental architecture is hardware efficient and can be combined with the quantum error correction techniques to fight against decoherence, thus promises the quantum enhanced sensing in practical applications.
146 - Y. C. Liu , G. R. Jin , 2010
Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength $chi$ of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator $hat{J}_{x}$, we find that the optimal sensitivity depends on initial coherent spin state. It degrades by a factor of $(2gamma)^{1/3}$ below super-Heisenberg limit $propto 1/N^{3/2}$ for particle number $N$ and the dephasing rate $1<!<gamma<N^{3/4}$. With a $hat{J}_y$ measurement, our analytical results confirm that the phase $phi=chi tsim 0$ can be detected at the limit even in the presence of the dephasing.
The Heisenberg limit is the superior precision available by entanglement sensors. However, entanglementis fragile against dephasing, and there is no known quantum metrology protocol that can achieve Heisenberg limited sensitivity with the presence of independent dephasing. Here, we show that the Heisenberg limit is attainable under the effect of independent dephasing under conditions where the probe qubits decohere due to both target fields and local environments. To detect the target fields, we exploit the entanglement properties to decay much faster than the classical states due to collective noise while most of the previous schemes use a coherent phase shift from the target fields. Actually, if the temporally fluctuating target fields behave as Markovian collective dephasing, we can estimate the collective dephasing rate with a sensitivity at the Heisenberg limit under the effect of independent dephasing. Our work opens the possibility for robust Heisenberg-limited metrology.
In this work an exactly solvable model of N two-level systems interacting with a single bosonic dephasing reservoir is considered to unravel the role played by collective non-Markovian dephasing. We show that phase estimation with entangled states fo r this model can exceed the standard quantum limit and demonstrate Heisenberg scaling with the number of atoms for an arbitrary temperature. For a certain class of reservoir densities of states decoherence can be suppressed in the limit of large number of atoms and the Heisenberg limit can be restored for arbitrary interrogation times. We identify the second class of densities when the Heisenberg scaling can be restored for any finite interrogation time. We also find the third class of densities when the standard quantum limit can be exceeded only on the initial stage of dynamics in the Zeno-regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا