ﻻ يوجد ملخص باللغة العربية
Two-mode interferometers, such as Michelson interferometer based on two spatial optical modes, lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. However, the experimental demonstration still remains elusive. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form $left(left|0rightrangle +left|Nrightrangle right)/sqrt{2}$ are generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as $sim N^{-0.94}$. A $9.1$~$mathrm{dB}$ enhancement of the precision over the SNL at $N=12$, which is only $1.7$~$mathrm{dB}$ away from the HL, is achieved. Our experimental architecture is hardware efficient and can be combined with the quantum error correction techniques to fight against decoherence, thus promises the quantum enhanced sensing in practical applications.
The goal of quantum metrology is the precise estimation of parameters using quantum properties such as entanglement. This estimation usually consists of three steps: state preparation, time evolution during which information of the parameters is enco
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detectio
We study the sensitivity and resolution of phase measurement in a Mach-Zehnder interferometer with two-mode squeezed vacuum (<n> photons on average). We show that super-resolution and sub-Heisenberg sensitivity is obtained with parity detection. In p
Spin cat states are promising candidates for quantum-enhanced measurement. Here, we analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where the uncertainty is inversely proportional to the t
We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maxim