ترغب بنشر مسار تعليمي؟ اضغط هنا

Scatter Correction in X-ray CT by Physics-Inspired Deep Learning

126   0   0.0 ( 0 )
 نشر من قبل Berk Iskender
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

A fundamental problem in X-ray Computed Tomography (CT) is the scatter due to interaction of photons with the imaged object. Unless corrected, scatter manifests itself as degradations in the reconstructions in the form of various artifacts. Scatter correction is therefore critical for reconstruction quality. Scatter correction methods can be divided into two categories: hardware-based; and software-based. Despite success in specific settings, hardware-based methods require modification in the hardware, or increase in the scan time or dose. This makes software-based methods attractive. In this context, Monte-Carlo based scatter estimation, analytical-numerical, and kernel-based methods were developed. Furthermore, data-driven approaches to tackle this problem were recently demonstrated. In this work, two novel physics-inspired deep-learning-based methods, PhILSCAT and OV-PhILSCAT, are proposed. The methods estimate and correct for the scatter in the acquired projection measurements. They incorporate both an initial reconstruction of the object of interest and the scatter-corrupted measurements related to it. They use a common deep neural network architecture and cost function, both tailored to the problem. Numerical experiments with data obtained by Monte-Carlo simulations of the imaging of phantoms reveal significant improvement over a recent purely projection-domain deep neural network scatter correction method.



قيم البحث

اقرأ أيضاً

In X-ray imaging, photons are transmitted through and absorbed by the subject, but are also scattered in significant quantities. Previous attempts to use scattered photons for biological imaging used pencil or fan beam illumination. Here we present 3 D X-ray Scatter Tomography using full-field illumination. Synchrotron imaging experiments were performed of a phantom and the chest of a juvenile rat. Transmitted and scattered photons were simultaneously imaged with separate cameras; a scientific camera directly downstream of the sample stage, and a pixelated detector with a pinhole imaging system placed at 45${}^circ$ to the beam axis. We obtained scatter tomogram feature fidelity sufficient for segmentation of the lung and major airways in the rat. The image contrast in scatter tomogram slices approached that of transmission imaging, indicating robustness to the amount of multiple scattering present in our case. This opens the possibility of augmenting full-field 2D imaging systems with additional scatter detectors to obtain complementary modes or to improve the fidelity of existing images without additional dose, potentially leading to single-shot or reduced-angle tomography or overall dose reduction for live animal studies.
In sparse-view Computed Tomography (CT), only a small number of projection images are taken around the object, and sinogram interpolation method has a significant impact on final image quality. When the amount of sparsity (the amount of missing views in sinogram data) is not high, conventional interpolation methods have yielded good results. When the amount of sparsity is high, more advanced sinogram interpolation methods are needed. Recently, several deep learning (DL) based sinogram interpolation methods have been proposed. However, those DL-based methods have mostly tested so far on computer simulated sinogram data rather experimentally acquired sinogram data. In this study, we developed a sinogram interpolation method for sparse-view micro-CT based on the combination of U-Net and residual learning. We applied the method to sinogram data obtained from sparse-view micro-CT experiments, where the sparsity reached 90%. The interpolated sinogram by the DL neural network was fed to FBP algorithm for reconstruction. The result shows that both RMSE and SSIM of CT image are greatly improved. The experimental results demonstrate that this sinogram interpolation method produce significantly better results over standard linear interpolation methods when the sinogram data are extremely sparse.
126 - Wei Zhao , Dengwang Li , Kai Niu 2018
Due to the energy-dependent nature of the attenuation coefficient and the polychromaticity of the X-ray source, beam hardening effect occurs when X-ray photons penetrate through an object, causing a nonlinear projection data. When a linear reconstruc tion algorithm, such as filtered backprojection, is applied to reconstruct the projection data, beam hardening artifacts which show as cupping and streaks are present in the CT image. The aim of this study was to develop a fast and accurate beam hardening correction method which can deal with beam hardening artifacts induced by multi-materials objects. Based on spectrum estimation, the nonlinear attenuation process of the X-ray projection was modeled by reprojecting a template image with the estimated polychromatic spectrum. The template images were obtained by segmenting the uncorrected into different components using a simple segmentation algorithm. Numerical simulations, experimental phantom data and animal data which were acquired on a modern diagnostic CT scanner (Discovery CT750 HD, GE Healthcare, WI, USA) and a modern C-Arm CT scanner (Artis Zee, Siemens Healthcare, Forchheim, Germany), respectively, were used to evaluate the proposed method. The results show the proposed method significantly reduced both cupping and streak artifacts, and successfully recovered the Hounsfield Units (HU) accuracy.
While micro-CT systems are instrumental in preclinical research, clinical micro-CT imaging has long been desired with cochlear implantation as a primary example. The structural details of the cochlear implant and the temporal bone require a significa ntly higher image resolution than that (about 0.2 mm) provided by current medical CT scanners. In this paper, we propose a clinical micro-CT (CMCT) system design integrating conventional spiral cone-beam CT, contemporary interior tomography, deep learning techniques, and technologies of micro-focus X-ray source, photon-counting detector (PCD), and robotic arms for ultrahigh resolution localized tomography of a freely-selected volume of interest (VOI) at a minimized radiation dose level. The whole system consists of a standard CT scanner for a clinical CT exam and VOI specification, and a robotic-arm based micro-CT scanner for a local scan at much higher spatial and spectral resolution as well as much reduced radiation dose. The prior information from global scan is also fully utilized for background compensation to improve interior tomography from local data for accurate and stable VOI reconstruction. Our results and analysis show that the proposed hybrid reconstruction algorithm delivers superior local reconstruction, being insensitive to the misalignment of the isocenter position and initial view angle in the data/image registration while the attenuation error caused by scale mismatch can be effectively addressed with bias correction. These findings demonstrate the feasibility of our system design. We envision that deep learning techniques can be leveraged for optimized imaging performance. With high resolution imaging, high dose efficiency and low system cost synergistically, our proposed CMCT system has great potentials in temporal bone imaging as well as various other clinical applications.
Objective: Magnetic Resonance Spectroscopy (MRS) is a noninvasive tool to reveal metabolic information. One challenge of MRS is the relatively low Signal-Noise Ratio (SNR) due to low concentrations of metabolites. To improve the SNR, the most common approach is to average signals that are acquired in multiple times. The data acquisition time, however, is increased by multiple times accordingly, resulting in the scanned objects uncomfortable or even unbearable. Methods: By exploring the multiple sampled data, a deep learning denoising approach is proposed to learn a mapping from the low SNR signal to the high SNR one. Results: Results on simulated and in vivo data show that the proposed method significantly reduces the data acquisition time with slightly compromised metabolic accuracy. Conclusion: A deep learning denoising method was proposed to significantly shorten the time of data acquisition, while maintaining signal accuracy and reliability. Significance: Provide a solution of the fundamental low SNR problem in MRS with artificial intelligence.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا