ﻻ يوجد ملخص باللغة العربية
In X-ray imaging, photons are transmitted through and absorbed by the subject, but are also scattered in significant quantities. Previous attempts to use scattered photons for biological imaging used pencil or fan beam illumination. Here we present 3D X-ray Scatter Tomography using full-field illumination. Synchrotron imaging experiments were performed of a phantom and the chest of a juvenile rat. Transmitted and scattered photons were simultaneously imaged with separate cameras; a scientific camera directly downstream of the sample stage, and a pixelated detector with a pinhole imaging system placed at 45${}^circ$ to the beam axis. We obtained scatter tomogram feature fidelity sufficient for segmentation of the lung and major airways in the rat. The image contrast in scatter tomogram slices approached that of transmission imaging, indicating robustness to the amount of multiple scattering present in our case. This opens the possibility of augmenting full-field 2D imaging systems with additional scatter detectors to obtain complementary modes or to improve the fidelity of existing images without additional dose, potentially leading to single-shot or reduced-angle tomography or overall dose reduction for live animal studies.
A novel Positron Emission Tomography system, based on plastic scintillators, is being developed by the J-PET collaboration. In this article we present the simulation results of the scatter fraction, representing one of the parameters crucial for back
A fundamental problem in X-ray Computed Tomography (CT) is the scatter due to interaction of photons with the imaged object. Unless corrected, scatter manifests itself as degradations in the reconstructions in the form of various artifacts. Scatter c
Due to the energy-dependent nature of the attenuation coefficient and the polychromaticity of the X-ray source, beam hardening effect occurs when X-ray photons penetrate through an object, causing a nonlinear projection data. When a linear reconstruc
Optical coherence tomography angiography (OCTA) has been established as a powerful tool for investigating vascular diseases and is expected to become a standard of care technology. However, its widespread clinical usage is hindered by technical gaps
The degradation mechanism in a sodium cell of a layered Na0.48Al0.03Co0.18Ni0.18Mn0.47O2 (NCAM) cathode with P3/P2 structure is investigated by revealing the changes in microstructure and composition upon cycling. The work aims to rationalize the gra