ﻻ يوجد ملخص باللغة العربية
The proton radiography diagnostic is widely used in laser-plasma experiments to make magnetic field measurements. Recent developments in analysis have enabled quantitative reconstruction of path-integrated magnetic field values, but making conclusions about the three-dimensional structure of the fields remains challenging. In this Letter we propose and demonstrate in kinetic simulations a novel target geometry which makes possible the production of multiple proton beams from a single laser pulse, enabling the application of tomographic methods to proton radiography.
Proton radiography is a widely-fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here, the use of to
Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of th
We present an experimental realisation of Hardys thought experiment [Phys. Rev. Lett. {bf 68}, 2981 (1992)], using photons. The experiment consists of a pair of Mach-Zehnder interferometers that interact through photon bunching at a beam splitter. A
The mechanism of heating for hot, dilute, and turbulent plasmas represents a long-standing problem in space physics, whose implications concern both near-Earth environments and astrophysical systems. In order to explore the possible role of interpart
Ultrasound computed tomography (USCT) is an emerging imaging modality for breast imaging that can produce quantitative images that depict the acoustic properties of tissues. Computer-simulation studies, also known as virtual imaging trials, provide r