ﻻ يوجد ملخص باللغة العربية
We present an experimental realisation of Hardys thought experiment [Phys. Rev. Lett. {bf 68}, 2981 (1992)], using photons. The experiment consists of a pair of Mach-Zehnder interferometers that interact through photon bunching at a beam splitter. A striking contradiction is created between the predictions of quantum mechanics and local hidden variable based theories. The contradiction relies on non-maximally entangled position states of two particles.
Wheeler has strikingly illustrated the wave-particle duality by the delayed-choice thought experiment, in which the configuration of a 2-path interferometer is chosen after a single-photon light-pulsed has entered it. We present a quantitative theore
Here we present the most general framework for $n$-particle Hardys paradoxes, which include Hardys original one and Cerecedas extension as special cases. Remarkably, for any $nge 3$ we demonstrate that there always exist generalized paradoxes (with t
Certain predictions of quantum theory are not compatible with the notion of local-realism. This was the content of Bells famous theorem of the year 1964. Bell proved this with the help of an inequality, famously known as Bells inequality. The alterna
Since the pillars of quantum theory were established, it was already noted that quantum physics may allow certain correlations defying any local realistic picture of nature, as first recognized by Einstein, Podolsky and Rosen. These quantum correlati
We establish a quantitative relation between Hardys paradox and the breaking of uncertainty principle in the sense of measurement-disturbance relations in the conditional measurement of non-commuting operators. The analysis of the inconsistency of lo