ﻻ يوجد ملخص باللغة العربية
Thermodynamical description of the system created during high energy collision requires a proper thermodynamical framework to study the distribution of particles. In this work, we have attempted to explain the transverse momentum spectra of charged hadrons formed in $pp$ collision at different energies using the Pearson statistical framework. This formalism has been proved to nicely explain the spectra of particles produced in soft processes as well hard scattering processes in a consistent manner. For this analysis, we have used the highest available range of $p_T$ published by experiments to verify the applicability of Pearson statistical framework at large $p_T$.
We predict the shape of the transverse momentum p_T spectrum of Upsilon production. The distribution at low p_T is dominated by the region of small impact parameter b and may be computed reliably in perturbation theory. We resum to all orders in the
Analysis of transverse momentum distributions is a useful tool to understand the dynamics of relativistic particles produced in high energy collision. Finding a proper distribution function to approximate the spectra is a vastly developing area of re
In the framework of the gluon-gluon fusion process for Higgs boson production there are two different prescriptions. They are given by the exact process where the gluons couple via top-quark loops to the Higgs boson and by the approximation where the
Transverse momentum spectra of identified particles produced in heavy-ion collisions at the Large Hadron Collider are described with relativistic fluid dynamics. We perform a systematic comparison of experimental data for pions, kaons and protons up
Coupled-channel dynamics for scattering and production processes in partial-wave amplitudes is discussed from a perspective that emphasizes unitarity and analyticity. We elaborate on several methods that have driven to important results in hadron phy