ترغب بنشر مسار تعليمي؟ اضغط هنا

Sunspot Records by Antonio Colla just after the Dalton Minimum

162   0   0.0 ( 0 )
 نشر من قبل V\\'ictor M. S\\'anchez Carrasco
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antonio Colla was a meteorologist and astronomer who made sunspot observations at the Meteorological Observatory of the Parma University (Italy). He carried out his sunspot records from 1830 to 1843, just after the Dalton Minimum. We have recovered 71 observation days for this observer. Unfortunately, many of these records are qualitative and we could only obtain the number of sunspot groups and/or single sunspots from 25 observations. However, we highlight the importance of these records because Colla is not included in the sunspot group database as an observer and, therefore, neither his sunspot observations. According to the number of groups, the sunspot observations made by Colla are similar as several observers of his time. For common observation day, only Stark significantly recorded more groups than Colla. Moreover, we have calculated the sunspot area and positions from Collas sunspot drawings concluding that both areas and positions recorded by this observer seem unreal. Therefore, Collas drawings can be interpreted such as sketches including reliable information on the number of groups but the information on sunspot areas and positions should not be used for scientific purposes.



قيم البحث

اقرأ أيضاً

In addition to regular Schwabe cycles (~ 11 years), solar activity also shows longer periods of enhanced or reduced activity. Of these, reconstructions of the Dalton Minimum provide controversial sunspot group numbers and limited sunspot positions, p artially due to limited source record accessibility. We analysed Stephan Prantners sunspot observations from 1804--1844, the values of which had only been known through estimates despite their notable chronological coverage during the Dalton Minimum. We identified his original manuscript in Stiftsarchiv Wilten, near Innsbruck, Austria. We reviewed his biography (1782--1873) and located his observational sites at Wilten and Waidring, which housed the principal telescopes for his early and late observations: a 3.5-inch astronomical telescope and a Reichenbach 4-feet achromatic erecting telescope, respectively. We identified 215 days of datable sunspot observations, which are twice as much data as his estimated data in the existing database (= 115 days). Prantner counted up to 7--9 sunspot groups per day and measured sunspot positions, which show their distributions in both solar hemispheres. These results strikingly emphasise the difference between the Dalton Minimum and the Maunder Minimum as well as the similarity between the Dalton Minimum and the modern solar cycles.
In addition to the regular Schwabe cycles of approximately 11 y, prolonged solar activity minima have been identified through the direct observation of sunspots and aurorae, as well as proxy data of cosmogenic isotopes. Some of these minima have been regarded as grand solar minima, which are arguably associated with the special state of the solar dynamo and have attracted significant scientific interest. In this paper, we review how these prolonged solar activity minima have been identified. In particular, we focus on the Dalton Minimum, which is named after John Dalton. We review Daltons scientific achievements, particularly in geophysics. Special emphasis is placed on his lifelong observations of auroral displays over approximately five decades in Great Britain. Daltons observations for the auroral frequency allowed him to notice the scarcity of auroral displays in the early 19th century. We analyze temporal variations in the annual frequency of such displays from a modern perspective. The contemporary geomagnetic positions of Daltons observational site make his dataset extremely valuable because his site is located in the sub-auroral zone and is relatively sensitive to minor enhancements in solar eruptions and solar wind streams. His data indicate clear solar cycles in the early 19th century and their significant depression from 1798 to 1824. Additionally, his data reveal a significant spike in auroral frequency in 1797, which chronologically coincides with the lost cycle that is believed to have occurred at the end of Solar Cycle 4. Therefore, John Daltons achievements can still benefit modern science and help us improve our understanding of the Dalton Minimum.
Hoyt & Schatten (1998) claim that Simon Marius would have observed the sun from 1617 Jun 7 to 1618 Dec 31 (Gregorian calendar) all days, except three short gaps in 1618, but would never have detected a sunspot -- based on a quotation from Marius in W olf (1857), but misinterpreted by Hoyt & Schatten. Marius himself specified in early 1619 that for one and a half year ... rather few or more often no spots could be detected ... which was never observed before (Marius 1619). The generic statement by Marius can be interpreted such that the active day fraction was below 0.5 (but not zero) from fall 1617 to spring 1619 and that it was 1 before fall 1617 (since August 1611). Hoyt & Schatten cite Zinner (1952), who referred to Zinner (1942), where observing dates by Marius since 1611 are given, but which were not used by Hoyt & Schatten. We present all relevant texts from Marius where he clearly stated that he observed many spots in different form on and since 1611 Aug 3 (Julian) = Aug 13 (Greg.) (on the first day together with Ahasverus Schmidnerus), 14 spots on 1612 May 30 (Julian) = Jun 9 (Greg.), which is consistent with drawings by Galilei and Jungius for that day, the latter is shown here for the first time, at least one spot on 1611 Oct 3 and/or 11 (Julian), i.e. Oct 13 and/or 21 (Greg.), when he changed his sunspot observing technique, he also mentioned that he has drawn sunspots for 1611 Nov 17 (Julian) = Nov 27 (Greg.), in addition to those clearly datable detections, there is evidence in the texts for regular observations. ... Sunspots records by Malapert from 1618 to 1621 show that the last low-latitude spot was seen in Dec 1620, while the first high-latitude spots were noticed in June and Oct 1620, so that the Schwabe cycle turnover (minimum) took place around that time, ...
Maunder Minimum forms an archetype for the Grand minima, and detailed knowledge of its temporal development has important consequences for the solar dynamo theory dealing with long-term solar activity evolution. Here we reconsider the current paradig m of the Grand minimum general scenario by using newly recovered sunspot observations by G. Marcgraf and revising some earlier uncertain data for the period 1636--1642, i.e., one solar cycle before the beginning of the Maunder Minimum. The new and revised data dramatically change the magnitude of the sunspot cycle just before the Maunder Minimum, from 60--70 down to about 20, implying a possibly gradual onset of the Minimum with reduced activity started two cycles before it. This revised scenario of the Maunder Minimum changes, through the paradigm for Grand solar/stellar activity minima, the observational constraint on the solar/stellar dynamo theories focused on long-term studies and occurrence of Grand minima.
Visible coronal structure, in particular the spatial evolution of coronal streamers, provides indirect information about solar magnetic activity and the underlying solar dynamo. Their apparent absence of structure observed during the total eclipses o f throughout the Maunder Minimum has been interpreted as evidence of a significant change in the solar magnetic field from that during modern cycles. Eclipse observations available from the more recent Dalton Minimum may be able to provide further information, sunspot activity being between the levels seen during recent cycles and in the Maunder Minimum. Here, we show and examine two graphical records of the total solar eclipse on 1806 June 16, during the Dalton Minimum. These records show significant rays and streamers around an inner ring. The ring is estimated to be ~ 0.44 R_S in width and the streamers in excess of 11.88 R_S in length. In combination with records of spicules or prominences, these eclipse records visually contrast the Dalton Minimum with the Maunder Minimum in terms of their coronal structure and support the existing discussions based on the sunspot observations. These eclipse records are broadly consistent with the solar cycle phase in the modelled open solar flux and the reconstructed slow solar wind at most latitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا