ﻻ يوجد ملخص باللغة العربية
In addition to the regular Schwabe cycles of approximately 11 y, prolonged solar activity minima have been identified through the direct observation of sunspots and aurorae, as well as proxy data of cosmogenic isotopes. Some of these minima have been regarded as grand solar minima, which are arguably associated with the special state of the solar dynamo and have attracted significant scientific interest. In this paper, we review how these prolonged solar activity minima have been identified. In particular, we focus on the Dalton Minimum, which is named after John Dalton. We review Daltons scientific achievements, particularly in geophysics. Special emphasis is placed on his lifelong observations of auroral displays over approximately five decades in Great Britain. Daltons observations for the auroral frequency allowed him to notice the scarcity of auroral displays in the early 19th century. We analyze temporal variations in the annual frequency of such displays from a modern perspective. The contemporary geomagnetic positions of Daltons observational site make his dataset extremely valuable because his site is located in the sub-auroral zone and is relatively sensitive to minor enhancements in solar eruptions and solar wind streams. His data indicate clear solar cycles in the early 19th century and their significant depression from 1798 to 1824. Additionally, his data reveal a significant spike in auroral frequency in 1797, which chronologically coincides with the lost cycle that is believed to have occurred at the end of Solar Cycle 4. Therefore, John Daltons achievements can still benefit modern science and help us improve our understanding of the Dalton Minimum.
In addition to regular Schwabe cycles (~ 11 years), solar activity also shows longer periods of enhanced or reduced activity. Of these, reconstructions of the Dalton Minimum provide controversial sunspot group numbers and limited sunspot positions, p
The Maunder Minimum (1645-1715) is currently considered the only grand minimum within telescopic sunspot observations since 1610. During this epoch, the Sun was extremely quiet and unusually free from sunspots. However, despite reduced frequency, can
In this article, we present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese Official Histories from the early 7th century to 887 to review the solar and auroral activities. In total, we found one sunspot record a
Auroral records found in historical archives and cosmogenic isotopes found in natural archives have served as sound proxies of coronal mass ejections (CMEs) and solar energetic particles (SEPs), respectively, for dates prior to the onset of telescopi
The importance of the investigation of magnetic superstorms is not limited to academic interest, because these superstorms can cause catastrophic impact on the modern civilisation due to our increasing dependency on technological infrastructure. In t