ﻻ يوجد ملخص باللغة العربية
Primal heuristics play a crucial role in exact solvers for Mixed Integer Programming (MIP). While solvers are guaranteed to find optimal solutions given sufficient time, real-world applications typically require finding good solutions early on in the search to enable fast decision-making. While much of MIP research focuses on designing effective heuristics, the question of how to manage multiple MIP heuristics in a solver has not received equal attention. Generally, solvers follow hard-coded rules derived from empirical testing on broad sets of instances. Since the performance of heuristics is instance-dependent, using these general rules for a particular problem might not yield the best performance. In this work, we propose the first data-driven framework for scheduling heuristics in an exact MIP solver. By learning from data describing the performance of primal heuristics, we obtain a problem-specific schedule of heuristics that collectively find many solutions at minimal cost. We provide a formal description of the problem and propose an efficient algorithm for computing such a schedule. Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
A recent Graph Neural Network (GNN) approach for learning to branch has been shown to successfully reduce the running time of branch-and-bound algorithms for Mixed Integer Linear Programming (MILP). While the GNN relies on a GPU for inference, MILP s
This paper proposes a novel primal heuristic for Mixed Integer Programs, by employing machine learning techniques. Mixed Integer Programming is a general technique for formulating combinatorial optimization problems. Inside a solver, primal heuristic
The success of Deep Learning and its potential use in many safety-critical applications has motivated research on formal verification of Neural Network (NN) models. In this context, verification involves proving or disproving that an NN model satisfi
Many available formal verification methods have been shown to be instances of a unified Branch-and-Bound (BaB) formulation. We propose a novel machine learning framework that can be used for designing an effective branching strategy as well as for co
The use of semi-autonomous and autonomous robotic assistants to aid in care of the elderly is expected to ease the burden on human caretakers, with small-stage testing already occurring in a variety of countries. Yet, it is likely that these robots w