ﻻ يوجد ملخص باللغة العربية
The success of Deep Learning and its potential use in many safety-critical applications has motivated research on formal verification of Neural Network (NN) models. In this context, verification involves proving or disproving that an NN model satisfies certain input-output properties. Despite the reputation of learned NN models as black boxes, and the theoretical hardness of proving useful properties about them, researchers have been successful in verifying some classes of models by exploiting their piecewise linear structure and taking insights from formal methods such as Satisifiability Modulo Theory. However, these methods are still far from scaling to realistic neural networks. To facilitate progress on this crucial area, we exploit the Mixed Integer Linear Programming (MIP) formulation of verification to propose a family of algorithms based on Branch-and-Bound (BaB). We show that our family contains previous verification methods as special cases. With the help of the BaB framework, we make three key contributions. Firstly, we identify new methods that combine the strengths of multiple existing approaches, accomplishing significant performance improvements over previous state of the art. Secondly, we introduce an effective branching strategy on ReLU non-linearities. This branching strategy allows us to efficiently and successfully deal with high input dimensional problems with convolutional network architecture, on which previous methods fail frequently. Finally, we propose comprehensive test data sets and benchmarks which includes a collection of previously released testcases. We use the data sets to conduct a thorough experimental comparison of existing and new algorithms and to provide an inclusive analysis of the factors impacting the hardness of verification problems.
We improve the scalability of Branch and Bound (BaB) algorithms for formally proving input-output properties of neural networks. First, we propose novel bounding algorithms based on Lagrangian Decomposition. Previous works have used off-the-shelf sol
Many available formal verification methods have been shown to be instances of a unified Branch-and-Bound (BaB) formulation. We propose a novel machine learning framework that can be used for designing an effective branching strategy as well as for co
Most existing interpretable methods explain a black-box model in a post-hoc manner, which uses simpler models or data analysis techniques to interpret the predictions after the model is learned. However, they (a) may derive contradictory explanations
In this work, the reachable set estimation and safety verification problems for a class of piecewise linear systems equipped with neural network controllers are addressed. The neural network is considered to consist of Rectified Linear Unit (ReLU) ac
Deep learning methods can be used to produce control policies, but certifying their safety is challenging. The resulting networks are nonlinear and often very large. In response to this challenge, we present OVERT: a sound algorithm for safety verifi