ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher Performance Visual Tracking with Dual-Modal Localization

104   0   0.0 ( 0 )
 نشر من قبل Jinghao Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual Object Tracking (VOT) has synchronous needs for both robustness and accuracy. While most existing works fail to operate simultaneously on both, we investigate in this work the problem of conflicting performance between accuracy and robustness. We first conduct a systematic comparison among existing methods and analyze their restrictions in terms of accuracy and robustness. Specifically, 4 formulations-offline classification (OFC), offline regression (OFR), online classification (ONC), and online regression (ONR)-are considered, categorized by the existence of online update and the types of supervision signal. To account for the problem, we resort to the idea of ensemble and propose a dual-modal framework for target localization, consisting of robust localization suppressing distractors via ONR and the accurate localization attending to the target center precisely via OFC. To yield a final representation (i.e, bounding box), we propose a simple but effective score voting strategy to involve adjacent predictions such that the final representation does not commit to a single location. Operating beyond the real-time demand, our proposed method is further validated on 8 datasets-VOT2018, VOT2019, OTB2015, NFS, UAV123, LaSOT, TrackingNet, and GOT-10k, achieving state-of-the-art performance.



قيم البحث

اقرأ أيضاً

Template-based discriminative trackers are currently the dominant tracking methods due to their robustness and accuracy, and the Siamese-network-based methods that depend on cross-correlation operation between features extracted from template and sea rch images show the state-of-the-art tracking performance. However, general cross-correlation operation can only obtain relationship between local patches in two feature maps. In this paper, we propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on VOT2018, VOT2019, OTB-100, UAV, NfS, TrackingNet, and LaSOT benchmarks and our method performs favorably against state-of-the-art algorithms. Training code and pretrained models are available at https://github.com/tongtybj/TrTr.
124 - Fei Xie , Wankou Yang , Bo Liu 2020
Existing visual object tracking usually learns a bounding-box based template to match the targets across frames, which cannot accurately learn a pixel-wise representation, thereby being limited in handling severe appearance variations. To address the se issues, much effort has been made on segmentation-based tracking, which learns a pixel-wise object-aware template and can achieve higher accuracy than bounding-box template based tracking. However, existing segmentation-based trackers are ineffective in learning the spatio-temporal correspondence across frames due to no use of the rich temporal information. To overcome this issue, this paper presents a novel segmentation-based tracking architecture, which is equipped with a spatio-appearance memory network to learn accurate spatio-temporal correspondence. Among it, an appearance memory network explores spatio-temporal non-local similarity to learn the dense correspondence between the segmentation mask and the current frame. Meanwhile, a spatial memory network is modeled as discriminative correlation filter to learn the mapping between feature map and spatial map. The appearance memory network helps to filter out the noisy samples in the spatial memory network while the latter provides the former with more accurate target geometrical center. This mutual promotion greatly boosts the tracking performance. Without bells and whistles, our simple-yet-effective tracking architecture sets new state-of-the-arts on the VOT2016, VOT2018, VOT2019, GOT-10K, TrackingNet, and VOT2020 benchmarks, respectively. Besides, our tracker outperforms the leading segmentation-based trackers SiamMask and D3S on two video object segmentation benchmarks DAVIS16 and DAVIS17 by a large margin. The source codes can be found at https://github.com/phiphiphi31/DMB.
We introduce a new approach for audio-visual speech separation. Given a video, the goal is to extract the speech associated with a face in spite of simultaneous background sounds and/or other human speakers. Whereas existing methods focus on learning the alignment between the speakers lip movements and the sounds they generate, we propose to leverage the speakers face appearance as an additional prior to isolate the corresponding vocal qualities they are likely to produce. Our approach jointly learns audio-visual speech separation and cross-modal speaker embeddings from unlabeled video. It yields state-of-the-art results on five benchmark datasets for audio-visual speech separation and enhancement, and generalizes well to challenging real-world videos of diverse scenarios. Our video results and code: http://vision.cs.utexas.edu/projects/VisualVoice/.
In this paper, we study a discriminatively trained deep convolutional network for the task of visual tracking. Our tracker utilizes both motion and appearance features that are extracted from a pre-trained dual stream deep convolution network. We sho w that the features extracted from our dual-stream network can provide rich information about the target and this leads to competitive performance against state of the art tracking methods on a visual tracking benchmark.
Unmanned Aerial Vehicles (UAV) can pose a major risk for aviation safety, due to both negligent and malicious use. For this reason, the automated detection and tracking of UAV is a fundamental task in aerial security systems. Common technologies for UAV detection include visible-band and thermal infrared imaging, radio frequency and radar. Recent advances in deep neural networks (DNNs) for image-based object detection open the possibility to use visual information for this detection and tracking task. Furthermore, these detection architectures can be implemented as backbones for visual tracking systems, thereby enabling persistent tracking of UAV incursions. To date, no comprehensive performance benchmark exists that applies DNNs to visible-band imagery for UAV detection and tracking. To this end, three datasets with varied environmental conditions for UAV detection and tracking, comprising a total of 241 videos (331,486 images), are assessed using four detection architectures and three tracking frameworks. The best performing detector architecture obtains an mAP of 98.6% and the best performing tracking framework obtains a MOTA of 96.3%. Cross-modality evaluation is carried out between visible and infrared spectrums, achieving a maximal 82.8% mAP on visible images when training in the infrared modality. These results provide the first public multi-approach benchmark for state-of-the-art deep learning-based methods and give insight into which detection and tracking architectures are effective in the UAV domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا