ﻻ يوجد ملخص باللغة العربية
Template-based discriminative trackers are currently the dominant tracking methods due to their robustness and accuracy, and the Siamese-network-based methods that depend on cross-correlation operation between features extracted from template and search images show the state-of-the-art tracking performance. However, general cross-correlation operation can only obtain relationship between local patches in two feature maps. In this paper, we propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on VOT2018, VOT2019, OTB-100, UAV, NfS, TrackingNet, and LaSOT benchmarks and our method performs favorably against state-of-the-art algorithms. Training code and pretrained models are available at https://github.com/tongtybj/TrTr.
In this paper, we present a new tracking architecture with an encoder-decoder transformer as the key component. The encoder models the global spatio-temporal feature dependencies between target objects and search regions, while the decoder learns a q
In video object tracking, there exist rich temporal contexts among successive frames, which have been largely overlooked in existing trackers. In this work, we bridge the individual video frames and explore the temporal contexts across them via a tra
Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the co
In this work, we propose TransTrack, a simple but efficient scheme to solve the multiple object tracking problems. TransTrack leverages the transformer architecture, which is an attention-based query-key mechanism. It applies object features from the
Existing state-of-the-art saliency detection methods heavily rely on CNN-based architectures. Alternatively, we rethink this task from a convolution-free sequence-to-sequence perspective and predict saliency by modeling long-range dependencies, which