ﻻ يوجد ملخص باللغة العربية
We present a lattice model of fermions with $N$ flavors and random interactions which describes a Planckian metal at low temperatures, $T rightarrow 0$, in the solvable limit of large $N$. We begin with quasiparticles around a Fermi surface with effective mass $m^ast$, and then include random interactions which lead to fermion spectral functions with frequency scaling with $k_B T/hbar$. The resistivity, $rho$, obeys the Drude formula $rho = m^ast/(n e^2 tau_{textrm{tr}})$, where $n$ is the density of fermions, and the transport scattering rate is $1/tau_{textrm{tr}} = f , k_B T/hbar$; we find $f$ of order unity, and essentially independent of the strength and form of the interactions. The random interactions are a generalization of the Sachdev-Ye-Kitaev models; it is assumed that processes non-resonant in the bare quasiparticle energies only renormalize $m^ast$, while resonant processes are shown to produce the Planckian behavior.
The Planckian relaxation rate $hbar/t_mathrm{P} = 2pi k_mathrm{B} T$ sets a characteristic time scale for both equilibration of quantum critical systems and maximal quantum chaos. In this note, we show that at the critical coupling between a supercon
Long wavelength descriptions of a half-filled lowest Landau level ($ u = 1/2$) must be consistent with the experimental observation of particle-hole (PH) symmetry. The traditional description of the $ u=1/2$ state pioneered by Halperin, Lee and Read
We numerically study a model of interacting spin-$1/2$ electrons with random exchange coupling on a fully connected lattice. This model hosts a quantum critical point separating two distinct metallic phases as a function of doping: a Fermi liquid pha
We investigate the quantum phase transitions of a disordered nanowire from superconducting to metallic behavior by employing extensive Monte Carlo simulations. To this end, we map the quantum action onto a (1+1)-dimensional classical XY model with lo
A wide range of disordered materials, including disordered correlated systems, show Universal Dielectric Response (UDR), followed by a superlinear power-law increase in their optical responses over exceptionally broad frequency regimes. While extensi