ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic phase diagram of $A_{2}$[FeCl$_{5}$(H$_{2}$O)] ($A$ = K, Rb, NH$_{4}$)

81   0   0.0 ( 0 )
 نشر من قبل Minseong Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Minseong Lee




اسأل ChatGPT حول البحث

Erythrosiderites with the formula A2FeX5H2O, where A = Rb, K, and (NH4) and X = Cl and Br are intriguing systems that possess various magnetic and electric phases, as well as multiferroic phases in which magnetism and ferroelectricity are coupled. In this report, we study the magnetic phase diagram of erythrosiderites as a function of superexchange interactions. To this end, we perform classical Monte Carlo simulations on magnetic Hamiltonians that contain five different superexchange interactions with single-ion anisotropies. Our phase diagram contains all magnetic ground states that have been experimentally observed in these materials. We argue that the ground states can be explained by varying the ratio of J4/J2. For J4/J2 > 0.95 a cycloidal spins structure is stabilized as observed in (NH4)2FeCl5H2O and otherwise, a collinear spin structure is stabilized as observed in (K,Rb)2FeCl5H2O. We also show that the difference in the single-ion anisotropy along a- and c- axes is essential to stabilize the intermediate state observed in (NH)2FeCl5H2O.



قيم البحث

اقرأ أيضاً

The structure and dehydration mechanism of the proton conducting oxide Ba$_{2}$In$_{2}$O$_{5}$(H$_{2}$O)$_{x}$ are investigated by means of variable temperature Raman spectroscopy together with inelastic neutron scattering. At room temperature, Ba$_{ 2}$In$_{2}$O$_{5}$(H$_{2}$O)$_{x}$ is found to be fully hydrated ($x=1$) and to have a perovskite-like structure, which dehydrates gradually with increasing temperature and at around 600 $^{circ}$C the material is essentially completely dehydrated ($x=0$). The dehydrated material exhibits a brownmillerite structure, which is featured by alternating layers of InO$_{6}$ octahedra and InO$_{4}$ tetrahedra. The transition from a perovskite-like to a brownmillerite-like structure is featured by a hydrated-to-intermediate phase transition at $ca.$ 370 {deg}C. The structure of the intermediate phase is similar to the structure of the fully dehydrated material, but with the difference that it exhibits a non-centrosymmetric distortion of the InO$_{6}$ octahedra not present in the latter. For temperatures below the hydrated-to-intermediate phase transition, dehydration is featured by the release of protons confined to the layers of InO$_{4}$ tetrahedra, whereas above the transition also protons bound to oxygens of the layers of InO$_{6}$ are released. Finally, we found that the O-H stretch region of the vibrational spectra is not consistent with a single-phase spectrum, but is in agreement with the superposition of spectra associated with two different proton configurations. The relative contributions of the two proton configurations depend on how the sample is hydrated.
Results of magnetic field and temperature dependent neutron diffraction and magnetization measurements on oxy-arsenate Rb$_{2}$Fe$_{2}$O(AsO$_{4}$)$_{2}$ are reported. The crystal structure of this compound contains pseudo-one-dimensional [Fe$_{2}$O$ _{6}$]$^infty$ sawtooth-like chains, formed by corner sharing isosceles triangles of $Fe^{3+}$ ions occupying two nonequivalent crystallographic sites. The chains extend infinitely along the crystallographic $b$-axis and are structurally confined from one another via diamagnetic (AsO$_{4}$)$^{3-}$ units along the $a$-axis, and Rb$^+$ cations along the $c$-axis direction. Neutron diffraction measurements indicate the onset of a long range antiferromagnetic order below approximately 25 K. The magnetic structure consists of ferrimagnetic chains which are antiferromagnetically coupled with each other. Within each chain, one of the two Fe sites carries a moment which lies along the emph{b}-axis, while the second site bears a canted moment in the opposite direction. Externally applied magnetic field induces a transition to a ferrimagnetic state, in which the coupling between the sawtooth chains becomes ferromagnetic. Magnetization measurements performed on optically-aligned single crystals reveal evidence for an uncompensated magnetization at low magnetic fields that could emerge from to a phase-segregated state with ferrimagnetic inclusions or from antiferromagnetic domain walls. The observed magnetic states and the competition between them is expected to arise from strongly frustrated interactions within the sawtooth chains and relatively weak coupling between them.
Electrical conductivity and high dielectric constant are in principle self-excluding, which makes the terms insulator and dielectric usually synonymous. This is certainly true when the electrical carriers are electrons, but not necessarily in a mater ial where ions are extremely mobile, electronic conduction is negligible and the charge transfer at the interface is immaterial. Here we demonstrate in a perovskite-derived structure containing five-coordinated Ti atoms, a colossal dielectric constant (up to $mbox{10}^9$) together with very high ionic conduction $mbox{10}^{-3}mbox{S.cm}^{-1}$ at room temperature. Coupled investigations of I-V and dielectric constant behavior allow to demonstrate that, due to ion migration and accumulation, this material behaves like a giant dipole, exhibiting colossal electrical polarization (of the order of $mbox{0.1,C.cm}^{-2}$). Therefore, it may be considered as a ferro-ionet and is extremely promising in terms of applications.
We have studied the superconducting phase diagram of NaHspace as a function of electronic doping, characterizing our samples both in terms of Na content $x$ and the Co valence state. Our findings are consistent with a recent report that intercalation of oxpspace ions into Na$_{x}$CoO$_{2}$, together with water, act as an additional dopant indicating that Na sub-stochiometry alone does not control the electronic doping of these materials. We find a superconducting phase diagram where optimal Tcspace is achieved through a Co valence range of 3.24 - 3.35, while Tcspace decreases for materials with a higher Co valence. The critical role of dimensionality in achieving superconductivity is highlighted by similarly doped non-superconducting anhydrous samples, differing from the superconducting hydrate only in inter-layer spacing. The increase of the interlayer separation between CoO$_{2}$ sheets as Co valence is varied into the optimal Tcspace region is further evidence for this criticality.
Recent studies on Rb2Ti2O5 crystals have demonstrated remarkable electrical properties. This material exhibits colossal electrical polarization between 200 K and 330 K. In the present work, we report on the observation of memory effects in Rb2Ti2O5 d ue to charge accumulation and we discuss the genuine memristive character of this material. An analytical model is proposed for the system, which takes into account the ionic diffusion and ionic migration and is in good agreement with the observed volatile memristive properties of the material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا