ﻻ يوجد ملخص باللغة العربية
Fast radio bursts (FRBs) probe the total column density of free electrons in the intergalactic medium (IGM) along the path of propagation though the dispersion measures (DMs) which depend on the baryon mass fraction in the IGM, i.e., $f_{rm IGM}$. In this letter, we investigate the large-scale clustering information of DMs to study the evolution of $f_{rm IGM}$. When combining with the Planck 2018 measurements, we could give tight constraints on the evolution of $f_{rm IGM}(z)$ from about $10^4$ FRBs with the intrinsic DM scatter of $30(1+z)~ rm pc/cm^3$ spanning 80% of the sky and redshift range $z=0-3$. Firstly, we consider the Taylor expansion of $f_{rm IGM}(z)$ up to second order, and find that the mean relative standard deviation $sigma(f_{rm IGM})equivleftlangle sigma[f_{rm IGM}(z)] /f_{rm IGM}(z) rightrangle$ is about 7.2%. In order to alleviate the dependence on fiducial model, we also adopt a non-parametric methods in this work, the local principle component analysis. We obtain the consistent, but weaker constraints on the evolution of $f_{rm IGM}(z)$, namely the mean relative standard deviation $sigma(f_{rm IGM})$ is 24.2%. With the forthcoming surveys, this could be a complimentary method to investigate the baryon mass fraction in the IGM.
In this paper, we study the evolution of the ionization fraction $x_e(z)$ during the epoch of reionization by using the dispersion measurements (DMs) of fast radio bursts (FRBs). Different from the previous studies, here we turn to consider the large
We analyze the sources of free electrons that produce the large dispersion measures, DM $approx 300-1600$ (in units cm$^{-3}$ pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce DM $sim 25-60$ cm$^{-3}$ pc from ionize
Fast radio bursts (FRBs) are millisecond-duration radio transients and can be used as a cosmological probe. However, the dispersion measure (DM) contributed by intergalactic medium (IGM) is hard to be distinguished from other components. In this pape
The recently discovered fast radio bursts (FRBs), presumably of extra-galactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dis
Five fast radio bursts (FRBs), including three apparently non-repeating ones FRB 180924, FRB 181112, and FRB 190523, and two repeaters, FRB 121102 and FRB 180916.J0158+65, have already been localized so far. We apply a method developed recently by us