ﻻ يوجد ملخص باللغة العربية
In this paper, we study the evolution of the ionization fraction $x_e(z)$ during the epoch of reionization by using the dispersion measurements (DMs) of fast radio bursts (FRBs). Different from the previous studies, here we turn to consider the large-scale clustering information of observed DMs of FRB catalog, which only needs the rough redshift distribution, instead of the exact redshift information of each FRB. Firstly, we consider the instantaneous ``texttt{tanh} model for $x_e(z)$ and find that including the auto-correlation information of the mock catalog, about $10^4$ FRBs with the intrinsic DM scatter of 100 $rm pc/cm^3$ spanning 20% of all sky, could significantly improve the constraint on the width $Delta_z$ of the model, when comparing with that from the CMB data alone. The evolution shape of the ionization fraction will be tightly narrowed, namely the duration of the epoch of reionization has been shrunk, $z_{rm dur}<2.24$ (95% C.L.). Furthermore, we also use another redshift-asymmetric reionization model and obtain that the FRB mock catalog could measure the ionization fraction at $z=6$ precisely with the $1sigma$ error $Delta x_e(z=6)=0.012$, which means that the large-scale clustering information of observed DMs of FRB catalog is very sensitive to the ionization fraction of the end of reionization epoch. We conclude that the observation of high-redshift FRBs could be a complementary probe to study the reionization history in the future.
Fast radio bursts (FRBs) probe the total column density of free electrons in the intergalactic medium (IGM) along the path of propagation though the dispersion measures (DMs) which depend on the baryon mass fraction in the IGM, i.e., $f_{rm IGM}$. In
We compare the dispersion measure (DM) statistics of FRBs detected by the ASKAP and Parkes radio telescopes. We jointly model their DM distributions, exploiting the fact that the telescopes have different survey fluence limits but likely sample the s
Understanding the origin of fast radio bursts (FRBs) is a central unsolved problem in astrophysics that is severely hampered by their poorly determined distance scale. Determining the redshift distribution of FRBs appears to require arcsecond angular
Fast Radios Bursts (FRBs) show large dispersion measures (DMs), suggesting an extragalactic location. We analyze the DMs of the 11 known FRBs in detail and identify steps as integer multiples of half the lowest DM found, 187.5cm$^{-3}$ pc, so that DM
Recent studies of fast radio bursts (FRBs) have led to many theories associating them with young neutron stars. If this is the case, then the presence of supernova ejecta and stellar winds provide a changing dispersion measure (DM) and rotation measu