ﻻ يوجد ملخص باللغة العربية
Embedding geometries in structured grids allows a simple treatment of complex objects in fluid flows. Various methods are available. The commonly used Brinkman-volume-penalization models geometries as porous media, where in the limit of vanishing porosity a solid object is approximated. In the simplest form, the velocity equations are augmented by a term penalizing the fluid velocity, the body velocity. yielding good results in many applications. However, it induces numerical stiffness, especially if high pressure gradients need to be balanced. Here, we focus on the effect of the reduced effective volume (commonly called porosity) of the porous medium. An approach is derived, which allows to reduce the flux through objects to practically zero with little increase of numerical stiffness. Also, non-slip boundary conditions and adiabatic boundary conditions are easily constructed. The porosity terms allow to keep the skew symmetry of the underlying numerical scheme, by which the numerical stability is improved. Furthermore, a very good conservation of mass and energy in the non-penalized domain can be achieved. The scheme is tested for acoustic scenarios, near incompressible and strongly compressible flows.
A two-phase, low-Mach-number flow solver is proposed for variable-density liquid and gas with phase change. The interface is captured using a split Volume-of-Fluid method, which solves the advection of the reference phase, generalized for the case wh
We study numerically joint mixing of salt and colloids by a chaotic velocity field $mathbf{V}$, and how salt inhomogeneities accelerate or delay colloid mixing by inducing a velocity drift $mathbf{V}_{rm dp}$ between colloids and fluid particles as p
We present a series of three-dimensional discrete Boltzmann (DB) models for compressible flows in and out of equilibrium. The key formulating technique is the construction of discrete equilibrium distribution function through inversely solving the ki
Wing flexibility plays an essential role in the aerodynamic performance of insects due to the considerable deformation of their wings during flight under the impact of inertial and aerodynamic forces. These forces come from the complex wing kinematic
Scale-space energy density function, $E(mathbf{x}, mathbf{r})$, is defined as the derivative of the two-point velocity correlation. The function E describes the turbulent kinetic energy density of scale r at a location x and can be considered as the