ﻻ يوجد ملخص باللغة العربية
We present a series of three-dimensional discrete Boltzmann (DB) models for compressible flows in and out of equilibrium. The key formulating technique is the construction of discrete equilibrium distribution function through inversely solving the kinetic moment relations that it satisfies. The crucial physical requirement is that all the used kinetic moment relations must be consistent with the non-equilibrium statistical mechanics. The necessity of such a kinetic model is that, with increasing the complexity of flows, the dynamical characterization of non-equilibrium state and the understanding of the constitutive relations need higher order kinetic moments and their evolution. The DB models at the Euler and Navier-Stokes levels proposed by this scheme are validated by several well-known benchmarks, ranging from one-dimension to three-dimension. Particularly, when the local Mach number, temperature ratio, and pressure ratio are as large as $10^2$, $10^4$, and $10^5$, respectively, the simulation results are still in excellent agreement with the Riemann solutions. How to model deeper thermodynamic non-equilibrium flows by DB is indicated. Via the DB method, it convenient to simulate nonequilibrium flows without knowing exact form of the hydrodynamic equations.
A two-fluid Discrete Boltzmann Model(DBM) for compressible flows based on Ellipsoidal Statistical Bhatnagar-Gross-Krook(ES-BGK) is presented. The model has flexible Prandtl number or specific heat ratio. Mathematically, the model is composed of two c
We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double distribution function approach, which consists
In a recent paper, Liu, Zhu and Wu (2015, {it J. Fluid Mech.} {bf 784}: 304) present a force theory for a body in a two-dimensional, viscous, compressible and steady flow. In this companion paper we do the same for three-dimensional flow. Using the f
Rayleigh-Taylor (RT) instability widely exists in nature and engineering fields. How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value. At present, abundant results of RT instabilit
A one-dimensional discrete Boltzmann model for detonation simulation is presented. Instead of numerical solving Navier-Stokes equations, this model obtains the information of flow field through numerical solving specially discretized Boltzmann equati