ترغب بنشر مسار تعليمي؟ اضغط هنا

A Grid of Core-Collapse Supernova Remnant Models I: The Effect of Wind-Driven Mass-Loss

71   0   0.0 ( 0 )
 نشر من قبل Taylor Jacovich
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive stars can shed material via steady, line-driven winds, eruptive outflows, or mass-transfer onto a binary companion. In the case of single stars, the mass is deposited by the stellar wind into the nearby environment. After the massive star explodes, the stellar ejecta interact with this circumstellar material (CSM), often-times resulting in bright X-ray line emission from both the shock-heated CSM and ejecta. The amount of material lost by the progenitor, the mass of ejecta, and its energetics all impact the bulk spectral characteristics of this X-ray emission. Here we present a grid of core-collapse supernova remnant models derived from models for massive stars with zero age main sequence masses of $sim$ 10 - 30 M$_odot$ evolved from the pre-main sequence stage with wind-driven mass-loss. Evolution is handled by a multi-stage pipeline of software packages. First, we use mesa (Modules for Experiments in Stellar Astrophysics) to evolve the progenitors from pre-main sequence to iron core collapse. We then use the Supernova Explosion Code (snec) to explode the mesa models, and follow them for the first 100 days following core-collapse. Finally, we couple the snec output, along with the CSM generated from mesa mass-loss rates, into the Cosmic-Ray Hydrodynamics code (ChN) to model the remnant phase to 7000 years post core-collapse. At the end of each stage, we compare our outputs with those found in the literature, and we examine any qualitative and quantitative differences in the bulk properties of the remnants and their spectra based on the initial progenitor mass, as well as mass-loss history.



قيم البحث

اقرأ أيضاً

The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various processes that can introduce asymmetries deep inside the star. Here we present near-infrared observations of the young Milky Way supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior, unshocked ejecta. The remnants interior has a bubble-like morphology that smoothly connects to and helps explain the multi-ringed structures seen in the remnants bright reverse shocked main shell of expanding debris. This internal structure may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.
We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming black body emission. As a first application of SNEC, we consider the explosions of a grid of 15 Msun (at zero-age main sequence) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ~20-100 days if >~1.5-2 Msun of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for Type IIP supernovae in nature, it suggests that, at least for zero-age main sequence masses <~ 20 Msun, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for Type IIL supernovae, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for Type IIb supernovae, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ~500 Rsun.
233 - C. D. Ott 2009
Core-collapse supernovae are among Natures most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of gal axies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmanis scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.
151 - H. Andresen 2018
We present predictions for the gravitational-wave (GW) emission of three-dimensional supernova (SN) simulations performed for a 15 solar-mass progenitor with the Prometheus-Vertex code using energy-dependent, three-flavor neutrino transport. The prog enitor adopted from stellar evolution calculations including magnetic fields had a fairly low specific angular momentum (j_Fe <~ 10^{15} cm^2/s) in the iron core (central angular velocity ~0.2 rad/s), which we compared to simulations without rotation and with artificially enhanced rotation (j_Fe <~ 2*10^{16} cm^2/s; central angular velocity ~0.5 rad/s). Our results confirm that the time-domain GW signals of SNe are stochastic, but possess deterministic components with characteristic patterns at low frequencies (<~200 Hz), caused by mass motions due to the standing accretion shock instability (SASI), and at high frequencies, associated with gravity-mode oscillations in the surface layer of the proto-neutron star (PNS). Non-radial mass motions in the post-shock layer as well as PNS convection are important triggers of GW emission, whose amplitude scales with the power of the hydrodynamic flows. There is no monotonic increase of the GW amplitude with rotation, but a clear correlation with the strength of SASI activity. Our slowly rotating model is a fainter GW emitter than the non-rotating model because of weaker SASI activity and damped convection in the post-shock layer and PNS. In contrast, the faster rotating model exhibits a powerful SASI spiral mode during its transition to explosion, producing the highest GW amplitudes with a distinctive drift of the low-frequency emission peak from ~80-100 Hz to ~40-50 Hz. This migration signifies shock expansion, whereas non-exploding models are discriminated by the opposite trend.
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multi-dimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure, and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multi-dimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Though we find that turbulent dissipation is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multi-dimensional simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا