ﻻ يوجد ملخص باللغة العربية
We study the energy transfer process in quantum battery systems consisting of multiple central spins and bath spins. Here with quantum battery we refer to the central spins, whereas the bath serves as the charger. For the single central-spin battery, we analytically derive the time evolutions of the energy transfer and the charging power with arbitrary number of bath spins. For the case of multiple central spins in the battery, we find the scaling-law relation between the maximum power $P_{max}$ and the number of central spins $N_B$. It approximately satisfies a scaling law relation $P_{max}propto N_{B}^{alpha}$, where scaling exponent $alpha$ varies with the bath spin number $N$ from the lower bound $alpha =1/2$ to the upper bound $alpha =3/2$. The lower and upper bounds correspond to the limits $Nto 1$ and $Ngg N_B$, respectively. In thermodynamic limit, by applying the Holstein-Primakoff (H-P) transformation, we rigorously prove that the upper bound is $P_{max}=0.72 B A sqrt{N} N_{B}^{3/2}$, which shows the same advantage in scaling of a recent charging protocol based on the Tavis-Cummins model. Here $B$ and $A $ are the external magnetic field and coupling constant between the battery and the charger.
Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of
A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior ex
We derive upper and lower bounds on the fidelity susceptibility in terms of macroscopic thermodynamical quantities, like susceptibilities and thermal average values. The quality of the bounds is checked by the exact expressions for a single spin in a
We experimentally measure the lower and upper bounds of concurrence for a set of two-qubit mixed quantum states using photonic systems. The measured concurrence bounds are in agreement with the results evaluated from the density matrices reconstructe
For the optimal success probability under minimum-error discrimination between $rgeq2$ arbitrary quantum states prepared with any a priori probabilities, we find new general analytical lower and upper bounds and specify the relations between these ne