ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Randomness Amplifiers: Upper and Lower Bounds

170   0   0.0 ( 0 )
 نشر من قبل Henry Yuen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. Finally, we show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date.



قيم البحث

اقرأ أيضاً

We derive upper and lower bounds on the fidelity susceptibility in terms of macroscopic thermodynamical quantities, like susceptibilities and thermal average values. The quality of the bounds is checked by the exact expressions for a single spin in a n external magnetic field. Their usefulness is illustrated by two examples of many-particle models which are exactly solved in the thermodynamic limit: the Dicke superradiance model and the single impurity Kondo model. It is shown that as far as divergent behavior is considered, the fidelity susceptibility and the thermodynamic susceptibility are equivalent for a large class of models exhibiting critical behavior.
Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure. We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimizations problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with $mn$ when $mapprox n$, which is the same as classical.
291 - Elena R. Loubenets 2021
For the optimal success probability under minimum-error discrimination between $rgeq2$ arbitrary quantum states prepared with any a priori probabilities, we find new general analytical lower and upper bounds and specify the relations between these ne w general bounds and the general bounds known in the literature. We also present the example where the new general analytical bounds, lower and upper, on the optimal success probability are tighter than most of the general analytical bounds known in the literature. The new upper bound on the optimal success probability explicitly generalizes to $r>2$ the form of the Helstrom bound. For $r=2$, each of our new bounds, lower and upper, reduces to the Helstrom bound.
We experimentally measure the lower and upper bounds of concurrence for a set of two-qubit mixed quantum states using photonic systems. The measured concurrence bounds are in agreement with the results evaluated from the density matrices reconstructe d through quantum state tomography. In our experiment, we propose and demonstrate a simple method to provide two faithful copies of a two-photon mixed state required for parity measurements: Two photon pairs generated by two neighboring pump laser pulses through optical parametric down conversion processes represent two identical copies. This method can be conveniently generalized for entanglement estimation of multi-photon mixed states.
We study the energy transfer process in quantum battery systems consisting of multiple central spins and bath spins. Here with quantum battery we refer to the central spins, whereas the bath serves as the charger. For the single central-spin battery, we analytically derive the time evolutions of the energy transfer and the charging power with arbitrary number of bath spins. For the case of multiple central spins in the battery, we find the scaling-law relation between the maximum power $P_{max}$ and the number of central spins $N_B$. It approximately satisfies a scaling law relation $P_{max}propto N_{B}^{alpha}$, where scaling exponent $alpha$ varies with the bath spin number $N$ from the lower bound $alpha =1/2$ to the upper bound $alpha =3/2$. The lower and upper bounds correspond to the limits $Nto 1$ and $Ngg N_B$, respectively. In thermodynamic limit, by applying the Holstein-Primakoff (H-P) transformation, we rigorously prove that the upper bound is $P_{max}=0.72 B A sqrt{N} N_{B}^{3/2}$, which shows the same advantage in scaling of a recent charging protocol based on the Tavis-Cummins model. Here $B$ and $A $ are the external magnetic field and coupling constant between the battery and the charger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا