ﻻ يوجد ملخص باللغة العربية
To investigate the growth history of galaxies, we measure the rest-frame radio, ultraviolet (UV), and optical sizes of 98 radio-selected, star-forming galaxies (SFGs) distributed over $0.3 lesssim z lesssim 3$ and median stellar mass of $log(M_star/ rm M_odot)approx10.4$. We compare the size of galaxy stellar disks, traced by rest-frame optical emission, relative to the overall extent of star formation activity that is traced by radio continuum emission. Galaxies in our sample are identified in three Hubble Frontier Fields: MACSJ0416.1$-$2403, MACSJ0717.5+3745, and MACSJ1149.5+2223. Radio continuum sizes are derived from 3 GHz and 6 GHz radio images ($lesssim 0$$.6$ resolution, $approx0.9, rm mu Jy, beam^{-1}$ noise level) from the Karl G. Jansky Very Large Array. Rest-frame UV and optical sizes are derived using observations from the Hubble Space Telescope and the ACS and WFC3 instruments. We find no clear dependence between the 3 GHz radio size and stellar mass of SFGs, which contrasts with the positive correlation between the UV/optical size and stellar mass of galaxies. Focusing on SFGs with $log(M_star/rm M_odot)>10$, we find that the radio/UV/optical emission tends to be more compact in galaxies with high star-formation rates ($rm SFRgtrsim 100,M_odot,yr^{-1}$), suggesting that a central, compact starburst (and/or an Active Galactic Nucleus) resides in the most luminous galaxies of our sample. We also find that the physical radio/UV/optical size of radio-selected SFGs with $log(M_star/rm M_odot)>10$ increases by a factor of $1.5-2$ from $zapprox 3$ to $zapprox0.3$, yet the radio emission remains two-to-three times more compact than that from the UV/optical. These findings indicate that these massive, {radio-selected} SFGs at $0.3 lesssim z lesssim 3$ tend to harbor centrally enhanced star formation activity relative to their outer-disks.
We investigate what drives the redshift evolution of the typical electron density ($n_e$) in star-forming galaxies, using a sample of 140 galaxies drawn primarily from KMOS$^{rm 3D}$ ($0.6lesssim{z}lesssim{2.6}$) and 471 galaxies from SAMI ($z<0.113$
We present Lyman continuum (LyC) radiation escape fraction $f_{rm{esc}}$ measurements for 183 spectroscopically confirmed star-forming galaxies in the redshift range $3.11 < z < 3.53$ in the textit{Chandra} Deep Field South. We use ground-based imagi
We present the discovery and spectrophotometric characterization of a large sample of 164 faint ($i_{AB}$ $sim$ $23$-$25$ mag) star-forming dwarf galaxies (SFDGs) at redshift $0.13$ $leq z leq$ $0.88$ selected by the presence of bright optical emissi
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies ($z gtrsim 0.6$). Br
We use both photometric and spectroscopic data from the {it Hubble Space Telescope} to explore the relationships among 4000 AA break (D4000) strength, colors, stellar masses, and morphology, in a sample of 352 galaxies with log$(M_{*}/M_{odot}) > 9.4