ﻻ يوجد ملخص باللغة العربية
We use both photometric and spectroscopic data from the {it Hubble Space Telescope} to explore the relationships among 4000 AA break (D4000) strength, colors, stellar masses, and morphology, in a sample of 352 galaxies with log$(M_{*}/M_{odot}) > 9.44$ at 0.6 $lesssim z lesssim$ 1.2. We have identified authentically quiescent galaxies in the $UVJ$ diagram based on their D4000 strengths. This spectroscopic identification is in good agreement with their photometrically-derived specific star formation rates (sSFR). Morphologically, most (that is, 66 out of 68 galaxies, $sim$ 97 %) of these newly identified quiescent galaxies have a prominent bulge component. However, not all of the bulge-dominated galaxies are quenched. We found that bulge-dominated galaxies show positive correlations among the D4000 strength, stellar mass, and the Sersic index, while late-type disks do not show such strong positive correlations. Also, bulge-dominated galaxies are clearly separated into two main groups in the parameter space of sSFR vs. stellar mass and stellar surface density within the effective radius, $Sigma_{rm e}$, while late-type disks and irregulars only show high sSFR. This split is directly linked to the `blue cloud and the `red sequence populations, and correlates with the associated central compactness indicated by $Sigma_{rm e}$. While star-forming massive late-type disks and irregulars (with D4000 $<$ 1.5 and log$(M_{*}/M_{odot}) gtrsim 10.5$) span a stellar mass range comparable to bulge-dominated galaxies, most have systematically lower $Sigma_{rm e}$ $lesssim$ $10^{9}M_{odot}rm{kpc^{-2}}$. This suggests that the presence of a bulge is a necessary but not sufficient requirement for quenching at intermediate redshifts.
We quantify the star formation (SF) in the inner cores ($mathcal{R}$/$R_{200}$$leq$0.3) of 24 massive galaxy clusters at 0.2$lesssim$$z$$lesssim$0.9 observed by the $Herschel$ Lensing Survey and the Cluster Lensing and Supernova survey with $Hubble$.
We test the impact of using variable star forming histories (SFHs) and the use of the IR luminosity (LIR) as a constrain on the physical parameters of high redshift dusty star-forming galaxies. We explore in particular the stellar properties of galax
We present an analysis of the environment of six QSO triplets at 1 $lesssim$ z $lesssim$ 1.5 by analyzing multiband (r,i,z, or g,r,i) images obtained with Megacam at the CFHT telescope, aiming to investigate whether they are associated or not with ga
We present Lyman continuum (LyC) radiation escape fraction $f_{rm{esc}}$ measurements for 183 spectroscopically confirmed star-forming galaxies in the redshift range $3.11 < z < 3.53$ in the textit{Chandra} Deep Field South. We use ground-based imagi
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies ($z gtrsim 0.6$). Br