ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Structure, Stellar Populations, and Star Formation Quenching at 0.6 $lesssim$ $z$ $lesssim$ 1.2

87   0   0.0 ( 0 )
 نشر من قبل Keunho Kim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Keunho Kim




اسأل ChatGPT حول البحث

We use both photometric and spectroscopic data from the {it Hubble Space Telescope} to explore the relationships among 4000 AA break (D4000) strength, colors, stellar masses, and morphology, in a sample of 352 galaxies with log$(M_{*}/M_{odot}) > 9.44$ at 0.6 $lesssim z lesssim$ 1.2. We have identified authentically quiescent galaxies in the $UVJ$ diagram based on their D4000 strengths. This spectroscopic identification is in good agreement with their photometrically-derived specific star formation rates (sSFR). Morphologically, most (that is, 66 out of 68 galaxies, $sim$ 97 %) of these newly identified quiescent galaxies have a prominent bulge component. However, not all of the bulge-dominated galaxies are quenched. We found that bulge-dominated galaxies show positive correlations among the D4000 strength, stellar mass, and the Sersic index, while late-type disks do not show such strong positive correlations. Also, bulge-dominated galaxies are clearly separated into two main groups in the parameter space of sSFR vs. stellar mass and stellar surface density within the effective radius, $Sigma_{rm e}$, while late-type disks and irregulars only show high sSFR. This split is directly linked to the `blue cloud and the `red sequence populations, and correlates with the associated central compactness indicated by $Sigma_{rm e}$. While star-forming massive late-type disks and irregulars (with D4000 $<$ 1.5 and log$(M_{*}/M_{odot}) gtrsim 10.5$) span a stellar mass range comparable to bulge-dominated galaxies, most have systematically lower $Sigma_{rm e}$ $lesssim$ $10^{9}M_{odot}rm{kpc^{-2}}$. This suggests that the presence of a bulge is a necessary but not sufficient requirement for quenching at intermediate redshifts.



قيم البحث

اقرأ أيضاً

We quantify the star formation (SF) in the inner cores ($mathcal{R}$/$R_{200}$$leq$0.3) of 24 massive galaxy clusters at 0.2$lesssim$$z$$lesssim$0.9 observed by the $Herschel$ Lensing Survey and the Cluster Lensing and Supernova survey with $Hubble$. These programmes, covering the rest-frame ultraviolet to far-infrared regimes, allow us to accurately characterize stellar mass-limited ($mathcal{M}_{*}$$>$$10^{10}$ $M_{odot}$) samples of star-forming cluster members (not)-detected in the mid- and/or far-infrared. We release the catalogues with the photometry, photometric redshifts, and physical properties of these samples. We also quantify the SF displayed by comparable field samples from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We find that in intermediate-$z$ cluster cores, the SF activity is suppressed with respect the field in terms of both the fraction ($mathcal{F}$) of star-forming galaxies (SFG) and the rate at which they form stars ($mathcal{SFR}$ and $smathcal{SFR} = mathcal{SFR}/mathcal{M}_{*}$). On average, the $mathcal{F}$ of SFGs is a factor $sim$$2$ smaller in cluster cores than in the field. Furthermore, SFGs present average $mathcal{SFR}$ and $smathcal{SFR}$ typically $sim$0.3 dex smaller in the clusters than in the field along the whole redshift range probed. Our results favour long time-scale quenching physical processes as the main driver of SF suppression in the inner cores of clusters since $z$$sim$0.9, with shorter time-scale processes being very likely responsible for a fraction of the missing SFG population.
251 - P. Sklias , D. Schaerer , D. Elbaz 2017
We test the impact of using variable star forming histories (SFHs) and the use of the IR luminosity (LIR) as a constrain on the physical parameters of high redshift dusty star-forming galaxies. We explore in particular the stellar properties of galax ies in relation with their location on the SFR-M* diagram. We perform SED fitting of the UV-NIR and FIR emissions of a large sample of GOODS-Herschel galaxies, for which rich multi-wavelength observations are available. We test different SFHs and imposing energy conservation in the SED fitting process, to face issues like the age-extinction degeneracy and produce SEDs consistent with observations. Our models work well for the majority of the sample, with the notable exception of the high LIR end, for which we have indications that our simple energy conservation approach cannot hold true. We find trends in the SFHs fitting our sources depending on stellar mass M* and z. Trends also emerge in the characteristic timescales of the SED models depending on the location on the SFR-M* diagram. We show that whilst using the same available observational data, we can produce galaxies less star-forming than usually inferred, if we allow declining SFHs, while properly reproducing their observables. These sources can be post-starbursts undergoing quenching, and their SFRs are potentially overestimated if inferred from their LIR. Fitting without the IR constrain leads to a strong preference for declining SFHs, while its inclusion increases the preference of rising SFHs, more so at high z, in tentative agreement with the cosmic star formation history. Keeping in mind that the sample is biased towards high LIR, the evolution shaped by our model appears as both bursty (initially) and steady-lasting (later on). The global SFH of the sample follows the cosmic SFH with a small scatter, and is compatible with the downsizing scenario of galaxy evolution.
We present an analysis of the environment of six QSO triplets at 1 $lesssim$ z $lesssim$ 1.5 by analyzing multiband (r,i,z, or g,r,i) images obtained with Megacam at the CFHT telescope, aiming to investigate whether they are associated or not with ga laxy protoclusters. This was done by using photometric redshifts trained using the high accuracy photometric redshifts of the COSMOS2015 catalogue. To improve the quality of our photometric redshift estimation, we included in our analysis near-infrared photometry (3.6 and 4.5 $mu m$) from the unWISE survey available for our fields and the COSMOS survey. This approach allowed us to obtain good photometric redshifts with dispersion, as measured with the robust Sigma NMAD statistics of $sim$ 0.04 for our six fields. Our analysis setup was reproduced on lightcones constructed from the Millennium Simulation data and the latest version of the L-GALAXIES semi-analytic model to verify the protocluster detectability in such conditions. The density field in a redshift slab containing each triplet was then analyzed with a Gaussian kernel density estimator. We did not find any significant evidence of the triplets inhabiting dense structures, such as a massive galaxy cluster or protocluster.
We present Lyman continuum (LyC) radiation escape fraction $f_{rm{esc}}$ measurements for 183 spectroscopically confirmed star-forming galaxies in the redshift range $3.11 < z < 3.53$ in the textit{Chandra} Deep Field South. We use ground-based imagi ng to measure $f_{rm{esc}}$, and use ground- and space-based photometry to derive galaxy physical properties using spectral energy distribution (SED) fitting. We additionally derive [O,textsc{iii}],+,H$beta$ equivalent widths (that fall in the observed $K$ band) by including nebular emission in the SED fitting. After removing foreground contaminants, we report the discovery of 11 new candidate LyC leakers, with absolute LyC escape fractions, $f_{rm{esc}}$ in the range $0.07-0.52$. Most galaxies in our sample ($approx94%$) do not show any LyC leakage, and we place $1sigma$ upper limits of $f_{rm{esc}} < 0.07$ through weighted averaging, where the Lyman-break selected galaxies have $f_{rm{esc}} < 0.07$ and `blindly discovered galaxies with no prior photometric selection have $f_{rm{esc}} < 0.10$. We additionally measure $f_{rm{esc}} < 0.09$ for extreme emission line galaxies in our sample with rest-frame [O,textsc{iii}],+,H$beta$ equivalent widths $>300$,AA. For the candidate LyC leakers, we do not find a strong dependence of $f_{rm{esc}}$ on their stellar masses and/or specific star-formation rates, and no correlation between $f_{rm{esc}}$ and EW$_0$([O,textsc{iii}],+,H$beta$). We suggest that this lack of correlations may be explained by viewing angle and/or non-coincident timescales of starburst activity and periods of high $f_{rm{esc}}$. Alternatively, escaping radiation may predominantly occur in highly localised star-forming regions, thereby obscuring any global trends with galaxy properties. Both hypotheses have important consequences for models of reionisation.
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies ($z gtrsim 0.6$). Br idging these epochs, we present gas-phase metallicity gradients of 84 star-forming galaxies between $0.08 < z < 0.84$. Using the galaxies with reliably determined metallicity gradients, we measure the median metallicity gradient to be negative ($-0.039^{+0.007}_{-0.009}$ dex/kpc). Underlying this, however, is significant scatter: $(8pm3)% [7]$ of galaxies have significantly positive metallicity gradients, $(38 pm 5)% [32]$ have significantly negative gradients, $(31pm5)% [26]$ have gradients consistent with being flat. (The remaining $(23pm5)% [19]$ have unreliable gradient estimates.) We notice a slight trend for a more negative metallicity gradient with both increasing stellar mass and increasing star formation rate (SFR). However, given the potential redshift and size selection effects, we do not consider these trends to be significant. Indeed, once we normalize the SFR relative to that of the main sequence, we do not observe any trend between the metallicity gradient and the normalized SFR. This is contrary to recent studies of galaxies at similar and higher redshifts. We do, however, identify a novel trend between the metallicity gradient of a galaxy and its size. Small galaxies ($r_d < 3$ kpc) present a large spread in observed metallicity gradients (both negative and positive gradients). In contrast, we find no large galaxies ($r_d > 3$ kpc) with positive metallicity gradients, and overall there is less scatter in the metallicity gradient amongst the large galaxies. These large (well-evolved) galaxies may be analogues of present-day galaxies, which also show a common negative metallicity gradient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا