ﻻ يوجد ملخص باللغة العربية
We propose a traveling wave scheme for broadband microwave isolation using parametric mode conversion in conjunction with adiabatic phase matching technique in a pair of coupled nonlinear transmission lines. This scheme is compatible with the circuit quantum electrodynamics architecture (cQED) and provides isolation without introducing additional quantum noise. We first present the scheme in a general setting then propose an implementation with Josephson junction transmission lines. Numerical simulation shows more than 20 dB isolation over an octave bandwidth (4-8,GHz) in a 2000 unit cell device with less than 0.05 dB insertion loss dominated by dielectric loss.
Emitters strongly coupled to a photonic crystal provide a powerful platform for realizing novel quantum light-matter interactions. Here we study the optical properties of a three-level artificial atomic chain coupled to a one-dimensional superconduct
We describe a scheme to coherently convert a microwave photon of a superconducting co-planar waveguide resonator to an optical photon emitted into a well-defined temporal and spatial mode. The conversion is realized by a cold atomic ensemble trapped
Current distribution for a thin superconducting strip shielded by two ideally conducting plains has been calculated. It is shown that at microwave requencies the current density has maximum over the center of the strip in contrast to the dc current pattern, which exhibits crowding over the edges.
As the field of quantum computing progresses to larger-scale devices, multiplexing will be crucial to scale quantum processors. While multiplexed readout is common practice for superconducting devices, relatively little work has been reported about t
High fidelity two-qubit gates are fundamental for scaling up the superconducting number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength, and demonstrate the CZ gate using two different schemes, adiaba