ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband Microwave Isolation with Adiabatic Mode Conversion in Coupled Superconducting Transmission Lines

85   0   0.0 ( 0 )
 نشر من قبل Mahdi Naghiloo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a traveling wave scheme for broadband microwave isolation using parametric mode conversion in conjunction with adiabatic phase matching technique in a pair of coupled nonlinear transmission lines. This scheme is compatible with the circuit quantum electrodynamics architecture (cQED) and provides isolation without introducing additional quantum noise. We first present the scheme in a general setting then propose an implementation with Josephson junction transmission lines. Numerical simulation shows more than 20 dB isolation over an octave bandwidth (4-8,GHz) in a 2000 unit cell device with less than 0.05 dB insertion loss dominated by dielectric loss.



قيم البحث

اقرأ أيضاً

Emitters strongly coupled to a photonic crystal provide a powerful platform for realizing novel quantum light-matter interactions. Here we study the optical properties of a three-level artificial atomic chain coupled to a one-dimensional superconduct ing microwave photonic crystal. A sharp minimum-energy dip appears in the transmission spectrum of a weak input field, which reveals rich behavior of the long-range interactions arising from localized bound states. We find that the dip frequency scales linearly with both the number of the artificial atoms and the characteristic strength of the long-range interactions when the localization length of the bound state is sufficiently large. Motivated by this observation, we present a simple model to calculate the dip frequency with system parameters, which agrees well with the results from exact numerics for large localization lengths. We observe oscillation between bunching and antibunching in photon-photon correlation function of the output field. Furthermore, we find that the model remains valid even though the coupling strengths between the photonic crystal and artificial atoms are not exactly equal and the phases of external driving fields for the artificial atoms are different. Thus, we may infer valuable system parameters from the dip location in the transmission spectrum, which provides an important measuring tool for the superconducting microwave photonic crystal systems in experiment. With remarkable advances to couple artificial atoms with microwave photonic crystals, our proposal may be experimentally realized in currently available superconducting circuits.
We describe a scheme to coherently convert a microwave photon of a superconducting co-planar waveguide resonator to an optical photon emitted into a well-defined temporal and spatial mode. The conversion is realized by a cold atomic ensemble trapped above the surface of the superconducting atom chip, near the antinode of the microwave cavity. The microwave photon couples to a strong Rydberg transition of the atoms that are also driven by a pair of laser fields with appropriate frequencies and wavevectors for an efficient wave-mixing process. With only few thousand atoms in an ensemble of moderate density, the microwave photon can be completely converted into an optical photon emitted with high probability into the phase matched direction and, e.g., fed into a fiber waveguide. This scheme operates in a free-space configuration, without requiring strong coupling of the atoms to a resonant optical cavity.
56 - V.M. Genkin 2001
Current distribution for a thin superconducting strip shielded by two ideally conducting plains has been calculated. It is shown that at microwave requencies the current density has maximum over the center of the strip in contrast to the dc current pattern, which exhibits crowding over the edges.
As the field of quantum computing progresses to larger-scale devices, multiplexing will be crucial to scale quantum processors. While multiplexed readout is common practice for superconducting devices, relatively little work has been reported about t he combination of flux and microwave control lines. Here, we present a method to integrate a microwave line and a flux line into a single XYZ line. This combined control line allows us to perform fast single-qubit gates as well as to deliver flux signals to the qubits. The measured relaxation times of the qubits are comparable to state-of-art devices employing separate control lines. We benchmark the fidelity of single-qubit gates with randomized benchmarking, achieving a fidelity above 99.5%, and we demonstrate that XYZ lines can in principle be used to run parametric entangling gates.
High fidelity two-qubit gates are fundamental for scaling up the superconducting number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength, and demonstrate the CZ gate using two different schemes, adiaba tic and diabatic methods. The Clifford based Randomized Benchmarking (RB) method is used to assess and optimize the CZ gate fidelity. The fidelity of adiabatic and diabatic CZ gates are 99.53(8)% and 98.72(2)%, respectively. We also analyze the errors induced by the decoherence. Comparing to 30 ns duration time of adiabatic CZ gate, the duration time of diabatic CZ gate is 19 ns, revealing lower incoherence error rate $r_{rm{incoherent, int}}$ = 0.0197(5) than $r_{rm{incoherent, int}}$ = 0.0223(3).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا