ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal

157   0   0.0 ( 0 )
 نشر من قبل Guozhu Song
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Emitters strongly coupled to a photonic crystal provide a powerful platform for realizing novel quantum light-matter interactions. Here we study the optical properties of a three-level artificial atomic chain coupled to a one-dimensional superconducting microwave photonic crystal. A sharp minimum-energy dip appears in the transmission spectrum of a weak input field, which reveals rich behavior of the long-range interactions arising from localized bound states. We find that the dip frequency scales linearly with both the number of the artificial atoms and the characteristic strength of the long-range interactions when the localization length of the bound state is sufficiently large. Motivated by this observation, we present a simple model to calculate the dip frequency with system parameters, which agrees well with the results from exact numerics for large localization lengths. We observe oscillation between bunching and antibunching in photon-photon correlation function of the output field. Furthermore, we find that the model remains valid even though the coupling strengths between the photonic crystal and artificial atoms are not exactly equal and the phases of external driving fields for the artificial atoms are different. Thus, we may infer valuable system parameters from the dip location in the transmission spectrum, which provides an important measuring tool for the superconducting microwave photonic crystal systems in experiment. With remarkable advances to couple artificial atoms with microwave photonic crystals, our proposal may be experimentally realized in currently available superconducting circuits.



قيم البحث

اقرأ أيضاً

We study the dynamics of a single photon pulse travels through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single photon pulse with finite bandwidth can even approach $100%$. The spectrum of the reflected and transmitted photon can also be significantly different from the single atom case. Many interesting physical phenomena can occur in this system such as the photonic bandgap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single photon frequency filter, single photon modulation and may find important applications in quantum information.
A structured electromagnetic reservoir can result in novel dynamics of quantum emitters. In particular, the reservoir can be tailored to have a memory of past interactions with emitters, in contrast to memory-less Markovian dynamics of typical open s ystems. In this Article, we investigate the non-Markovian dynamics of a superconducting qubit strongly coupled to a superconducting slow-light waveguide reservoir. Tuning the qubit into the spectral vicinity of the passband of this waveguide, we find non-exponential energy relaxation as well as substantial changes to the qubit emission rate. Further, upon addition of a reflective boundary to one end of the waveguide, we observe revivals in the qubit population on a timescale 30 times longer than the inverse of the qubits emission rate, corresponding to the round-trip travel time of an emitted photon. By tuning of the qubit-waveguide interaction strength, we probe a crossover between Markovian and non-Markovian qubit emission dynamics. These attributes allow for future studies of multi-qubit circuits coupled to structured reservoirs, in addition to constituting the necessary resources for generation of multiphoton highly entangled states.
147 - C. Janvier 2014
We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator ref lection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. The results indicate how to perform coherent manipulation of these states.
We propose a traveling wave scheme for broadband microwave isolation using parametric mode conversion in conjunction with adiabatic phase matching technique in a pair of coupled nonlinear transmission lines. This scheme is compatible with the circuit quantum electrodynamics architecture (cQED) and provides isolation without introducing additional quantum noise. We first present the scheme in a general setting then propose an implementation with Josephson junction transmission lines. Numerical simulation shows more than 20 dB isolation over an octave bandwidth (4-8,GHz) in a 2000 unit cell device with less than 0.05 dB insertion loss dominated by dielectric loss.
A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of li ght to solid state qubits. Quantum dots can be integrated into a photonic crystal, with optical transitions coupling to photons and spin states forming a long-lived quantum memory. Many researchers have now succeeded in coupling these emitters to photonic crystal cavities, but there have been no demonstrations of a functional spin qubit and quantum gates in this environment. Here we have developed a coupled cavity-quantum dot system in which the dot is controllably charged with a single electron. We perform the initialization, rotation and measurement of a single electron spin qubit using laser pulses and find that the cavity can significantly improve these processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا