ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations of non-ergodic stochastic processes

68   0   0.0 ( 0 )
 نشر من قبل J. Wittmer P.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the standard deviation $delta v(tsamp)$ of the variance $v[xbf]$ of time series $xbf$ measured over a finite sampling time $tsamp$ focusing on non-ergodic systems where independent configurations $c$ get trapped in meta-basins of a generalized phase space. It is thus relevant in which order averages over the configurations $c$ and over time series $k$ of a configuration $c$ are performed. Three variances of $v[xbf_{ck}]$ must be distinguished: the total variance $dvtot = dvint + dvext$ and its contributions $dvint$, the typical internal variance within the meta-basins, and $dvext$, characterizing the dispersion between the different basins. We discuss simplifications for physical systems where the stochastic variable $x(t)$ is due to a density field averaged over a large system volume $V$. The relations are illustrated for the shear-stress fluctuations in quenched elastic networks and low-temperature glasses formed by polydisperse particles and free-standing polymer films. The different statistics of $svint$ and $svext$ are manifested by their different system-size dependence



قيم البحث

اقرأ أيضاً

We study the non-Markovian random continuous processes described by the Mori-Zwanzig equation. As a starting point, we use the Markovian Gaussian Ornstein-Uhlenbeck process and introduce an integral memory term depending on the past of the process in to expression for the higher-order transition probability function and stochastic differential equation. We show that the proposed processes can be considered as continuous-time interpolations of discrete-time higher-order autoregressive sequences. An equation connecting the memory function (the kernel of integral term) and the two-point correlation function is obtained. A condition for stationarity of the process is established. We suggest a method to generate stationary continuous stochastic processes with prescribed pair correlation function. As illustration, some examples of numerical simulation of the processes with non-local memory are presented.
In this paper, we study the basic problem of a charged particle in a stochastic magnetic field. We consider dichotomous fluctuations of the magnetic field {where the sojourn time in one of the two states are distributed according to a given waiting t ime distribution either with Poisson or non-Poisson statistics, including as well the case of distributions with diverging mean time between changes of the field}, corresponding to an ergodicity breaking condition. We provide analytical and numerical results for all cases evaluating the average and the second moment of the position and velocity of the particle. We show that the field fluctuations induce diffusion of the charge with either normal or anomalous properties, depending on the statistics of the fluctuations, with distinct regimes from those observed, e.g., in standard Continuous Time Random Walk models.
Quantifying how distinguishable two stochastic processes are lies at the heart of many fields, such as machine learning and quantitative finance. While several measures have been proposed for this task, none have universal applicability and ease of u se. In this Letter, we suggest a set of requirements for a well-behaved measure of process distinguishability. Moreover, we propose a family of measures, called divergence rates, that satisfy all of these requirements. Focussing on a particular member of this family -- the co-emission divergence rate -- we show that it can be computed efficiently, behaves qualitatively similar to other commonly-used measures in their regimes of applicability, and remains well-behaved in scenarios where other measures break down.
We test the time evolution of quite general initial states in a model that is exactly solvable, $i.e.$ a semi-infinite $XY$ spin chain with an impurity at the boundary. The dynamics is portrayed through the observation of the site magnetization along the chain, focusing on the long-time behavior of the magnetization, which is estimated using the stationary phase method. Localized states are split off from the continuum for some regions of the impurity parameter space. Bound states are essential for the non-ergodic behavior reported here. When two impurity states exist, the quantum interference between them leads to magnetization oscillations which settle over very long times with the absence of damping. The frequency of the remanent oscillation is recognized as being the Rabi frequency of the localized levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا