ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinite ergodic theory and Non-extensive entropies

182   0   0.0 ( 0 )
 نشر من قبل Luis Gaggero Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We bring into account a series of result in the infinite ergodic theory that we believe that they are relevant to the theory of non-extensive entropies



قيم البحث

اقرأ أيضاً

We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups $U(N)$, $O(N)$ and $Sp(2N)$. In p articular we calculate critical exponents $s$, $ u$ and $z$, corresponding to the energy gap, correlation length and dynamic exponent respectively. We also compute the ground state correlators $leftlangle sigma^{x}_{i} sigma^{x}_{i+n} rightrangle_{g}$, $leftlangle sigma^{y}_{i} sigma^{y}_{i+n} rightrangle_{g}$ and $leftlangle prod^{n}_{i=1} sigma^{z}_{i} rightrangle_{g}$, all of which display quasi-long-range order with a critical exponent dependent upon system parameters. Our approach establishes universality of the exponents for the class of systems in question.
We investigate the standard deviation $delta v(tsamp)$ of the variance $v[xbf]$ of time series $xbf$ measured over a finite sampling time $tsamp$ focusing on non-ergodic systems where independent configurations $c$ get trapped in meta-basins of a gen eralized phase space. It is thus relevant in which order averages over the configurations $c$ and over time series $k$ of a configuration $c$ are performed. Three variances of $v[xbf_{ck}]$ must be distinguished: the total variance $dvtot = dvint + dvext$ and its contributions $dvint$, the typical internal variance within the meta-basins, and $dvext$, characterizing the dispersion between the different basins. We discuss simplifications for physical systems where the stochastic variable $x(t)$ is due to a density field averaged over a large system volume $V$. The relations are illustrated for the shear-stress fluctuations in quenched elastic networks and low-temperature glasses formed by polydisperse particles and free-standing polymer films. The different statistics of $svint$ and $svext$ are manifested by their different system-size dependence
373 - Shuzhou Wang , Zhenhua Wang 2020
We initiate the study of relative operator entropies and Tsallis relative operator entropies in the setting of JB-algebras. We establish their basic properties and extend the operator inequalities on relative operator entropies and Tsallis relative o perator entropies to this setting. In addition, we improve the lower and upper bounds of the relative operator $(alpha, beta)$-entropy in the setting of JB-algebras that were established in Hilbert space operators setting by Nikoufar [18, 20]. Though we employ the same notation as in the classical setting of Hilbert space operators, the inequalities in the setting of JB-algebras have different connotations and their proofs requires techniques in JB-algebras.
We use fluctuating hydrodynamics to analyze the dynamical properties in the non-equilibrium steady state of a diffusive system coupled with reservoirs. We derive the two-time correlations of the density and of the current in the hydrodynamic limit in terms of the diffusivity and the mobility. Within this hydrodynamic framework we discuss a generalization of the fluctuation dissipation relation in a non-equilibrium steady state where the response function is expressed in terms of the two-time correlations. We compare our results to an exact solution of the symmetric exclusion process. This exact solution also allows one to directly verify the fluctuating hydrodynamics equation.
253 - Denis Bernard 2021
The Macroscopic Fluctuation Theory is an effective framework to describe transports and their fluctuations in classical out-of-equilibrium diffusive systems. Whether the Macroscopic Fluctuation Theory may be extended to the quantum realm and which fo rm this extension may take is yet terra incognita but is a timely question. In this short introductory review, I discuss possible questions that a quantum version of the Macroscopic Fluctuation Theory could address and how analysing Quantum Simple Exclusion Processes yields pieces of answers to these questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا