ترغب بنشر مسار تعليمي؟ اضغط هنا

$mathcal{PT}$-symmetry breaking in a Kitaev chain with one pair of gain-loss potentials

112   0   0.0 ( 0 )
 نشر من قبل Yogesh N. Joglekar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parity-time ($mathcal{PT}$) symmetric systems are classical, gain-loss systems whose dynamics are governed by non-Hermitian Hamiltonians with exceptional-point (EP) degeneracies. The eigenvalues of a $mathcal{PT}$-symmetric Hamiltonian change from real to complex conjugates at a critical value of gain-loss strength that is called the $mathcal{PT}$ breaking threshold. Here, we obtain the $mathcal{PT}$-threshold for a one-dimensional, finite Kitaev chain -- a prototype for a p-wave superconductor -- in the presence of a single pair of gain and loss potentials as a function of the superconducting order parameter, on-site potential, and the distance between the gain and loss sites. In addition to a robust, non-local threshold, we find a rich phase diagram for the threshold that can be qualitatively understood in terms of the band-structure of the Hermitian Kitaev mo del. In particular, for an even chain with zero on-site potential, we find a re-entrant $mathcal{PT}$-symmetric phase bounded by second-order EP contours. Our numerical results are supplemented by analytical calculations for small system sizes.



قيم البحث

اقرأ أيضاً

The phenomenon of PT (parity- and time-reversal) symmetry breaking is conventionally associated with a change in the complex mode spectrum of a non-Hermitian system that marks a transition from a purely oscillatory to an exponentially amplified dynam ical regime. In this work we describe a new type of PT-symmetry breaking, which occurs in the steady-state energy distribution of open systems with balanced gain and loss. In particular, we show that the combination of nonlinear saturation effects and the presence of thermal or quantum noise in actual experiments results in unexpected behavior that differs significantly from the usual dynamical picture. We observe additional phases with preserved or `weakly broken PT symmetry, and an unconventional transition from a high-noise thermal state to a low-amplitude lasing state with broken symmetry and strongly reduced fluctuations. We illustrate these effects here for the specific example of coupled mechanical resonators with optically-induced loss and gain, but the described mechanisms will be essential for a general understanding of the steady-state properties of actual PT-symmetric systems operated at low amplitudes or close to the quantum regime.
59 - Shiguang Rong , Qiongtao Xie , 2018
Dynamics of a simple system, such as a two-state (dimer) model, are dramatically changed in the presence of interactions and external driving, and the resultant unitary dynamics show both regular and chaotic regions. We investigate the non-unitary dy namics of such a dimer in the presence of balanced gain and loss for the two states, i.e. a $mathcal{PT}$ symmetric dimer. We find that at low and high driving frequencies, the $mathcal{PT}$-symmetric dimer motion continues to be regular, and the system is in the $mathcal{PT}$-symmetric state. On that other hand, for intermediate driving frequency, the system shows chaotic motion, and is usually in the $mathcal{PT}$-symmetry broken state. Our results elucidate the interplay between the $mathcal{PT}$-symmetry breaking transitions and regular-chaotic transitions in an experimentally accessible toy model.
We investigate vortex excitations in dilute Bose-Einstein condensates in the presence of complex $mathcal{PT}$-symmetric potentials. These complex potentials are used to describe a balanced gain and loss of particles and allow for an easier calculati on of stationary states in open systems than in a full dynamical calculation including the whole environment. We examine the conditions under which stationary vortex states can exist and consider transitions from vortex to non-vortex states. In addition, we study the influences of $mathcal{PT}$ symmetry on the dynamics of non-stationary vortex states placed at off-center positions.
The attractive inverse square potential arises in a number of physical problems such as a dipole interacting with a charged wire, the Efimov effect, the Calgero-Sutherland model, near-horizon black hole physics and the optics of Maxwell fisheye lense s. Proper formulation of the inverse-square problem requires specification of a boundary condition (regulator) at the origin representing short-range physics not included in the inverse square potential and this generically breaks the Hamiltonians continuous scale invariance in an elementary example of a quantum anomaly. The systems spectrum qualitatively changes at a critical value of the inverse-square coupling, and we here point out that the transition at this critical potential strength can be regarded as an example of a $mathcal{PT}$ symmetry breaking transition. In particular, we use point particle effective field theory (PPEFT), as developed by Burgess et al [J. High Energy Phys., 2017(4):106, 2017], to characterize the renormalization group (RG) evolution of the boundary coupling under rescalings. While many studies choose boundary conditions to ensure the system is unitary, these RG methods allow us to systematically handle the richer case of nonunitary physics describing a source or sink at the origin (such as is appropriate for the charged wire or black hole applications). From this point of view the RG flow changes character at the critical inverse-square coupling, transitioning from a sub-critical regime with evolution between two real, unitary fixed points ($mathcal{PT}$ symmetric phase) to a super-critical regime with imaginary, dissipative fixed points ($mathcal{PT}$ symmetry broken phase) that represent perfect-sink and perfect-source boundary conditions, around which the flow executes limit-cycle evolution.
Balanced gain and loss renders the mean-field description of Bose-Einstein condensates PT symmetric. However, any experimental realization has to deal with unbalancing in the gain and loss contributions breaking the PT symmetry. We will show that suc h an asymmetry does not necessarily lead to a system without a stable mean-field ground state. Indeed, by exploiting the nonlinear properties of the condensate, a small asymmetry can stabilize the system even further due to a self-regulation of the particle number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا