ترغب بنشر مسار تعليمي؟ اضغط هنا

PT-symmetry breaking in the steady state of microscopic gain-loss systems

188   0   0.0 ( 0 )
 نشر من قبل Peter Rabl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phenomenon of PT (parity- and time-reversal) symmetry breaking is conventionally associated with a change in the complex mode spectrum of a non-Hermitian system that marks a transition from a purely oscillatory to an exponentially amplified dynamical regime. In this work we describe a new type of PT-symmetry breaking, which occurs in the steady-state energy distribution of open systems with balanced gain and loss. In particular, we show that the combination of nonlinear saturation effects and the presence of thermal or quantum noise in actual experiments results in unexpected behavior that differs significantly from the usual dynamical picture. We observe additional phases with preserved or `weakly broken PT symmetry, and an unconventional transition from a high-noise thermal state to a low-amplitude lasing state with broken symmetry and strongly reduced fluctuations. We illustrate these effects here for the specific example of coupled mechanical resonators with optically-induced loss and gain, but the described mechanisms will be essential for a general understanding of the steady-state properties of actual PT-symmetric systems operated at low amplitudes or close to the quantum regime.



قيم البحث

اقرأ أيضاً

The effect of PT-symmetry breaking in coupled systems with balanced gain and loss has recently attracted considerable attention and has been demonstrated in various photonic, electrical and mechanical systems in the classical regime. Here we generali ze the definition of PT symmetry to finite-dimensional open quantum systems, which are described by a Markovian master equation. Specifically, we show that the invariance of this master equation under a certain symmetry transformation implies the existence of stationary states with preserved and broken parity symmetry. As the dimension of the Hilbert space grows, the transition between these two limiting phases becomes increasingly sharp and the classically expected PT-symmetry breaking transition is recovered. This quantum-to-classical correspondence allows us to establish a common theoretical framework to identify and accurately describe PT-symmetry breaking effects in a large variety of physical systems, operated both in the classical and quantum regimes.
Parity-time ($mathcal{PT}$) symmetric systems are classical, gain-loss systems whose dynamics are governed by non-Hermitian Hamiltonians with exceptional-point (EP) degeneracies. The eigenvalues of a $mathcal{PT}$-symmetric Hamiltonian change from re al to complex conjugates at a critical value of gain-loss strength that is called the $mathcal{PT}$ breaking threshold. Here, we obtain the $mathcal{PT}$-threshold for a one-dimensional, finite Kitaev chain -- a prototype for a p-wave superconductor -- in the presence of a single pair of gain and loss potentials as a function of the superconducting order parameter, on-site potential, and the distance between the gain and loss sites. In addition to a robust, non-local threshold, we find a rich phase diagram for the threshold that can be qualitatively understood in terms of the band-structure of the Hermitian Kitaev mo del. In particular, for an even chain with zero on-site potential, we find a re-entrant $mathcal{PT}$-symmetric phase bounded by second-order EP contours. Our numerical results are supplemented by analytical calculations for small system sizes.
Balanced gain and loss renders the mean-field description of Bose-Einstein condensates PT symmetric. However, any experimental realization has to deal with unbalancing in the gain and loss contributions breaking the PT symmetry. We will show that suc h an asymmetry does not necessarily lead to a system without a stable mean-field ground state. Indeed, by exploiting the nonlinear properties of the condensate, a small asymmetry can stabilize the system even further due to a self-regulation of the particle number.
Symmetry-breaking transitions are a well-understood phenomenon of closed quantum systems in quantum optics, condensed matter, and high energy physics. However, symmetry breaking in open systems is less thoroughly understood, in part due to the richer steady-state and symmetry structure that such systems possess. For the prototypical open system---a Lindbladian---a unitary symmetry can be imposed in a weak or a strong way. We characterize the possible $mathbb{Z}_n$ symmetry breaking transitions for both cases. In the case of $mathbb{Z}_2$, a weak-symmetry-broken phase guarantees at most a classical bit steady-state structure, while a strong-symmetry-broken phase admits a partially-protected steady-state qubit. Viewing photonic cat qubits through the lens of strong-symmetry breaking, we show how to dynamically recover the logical information after any gap-preserving strong-symmetric error; such recovery becomes perfect exponentially quickly in the number of photons. Our study forges a connection between driven-dissipative phase transitions and error correction.
A numerical approach is presented that allows to compute nonequilibrium steady state properties of strongly correlated quantum many-body systems. The method is imbedded in the Keldysh Greens function formalism and is based upon the idea of the variat ional cluster approach as far as the treatment of strong correlations is concerned. It appears that the variational aspect is crucial as it allows for a suitable optimization of a reference system to the nonequilibrium target state. The approach is neither perturbative in the many-body interaction nor in the field, that drives the system out of equilibrium, and it allows to study strong perturbations and nonlinear responses of systems in which also the correlated region is spatially extended. We apply the presented approach to non-linear transport across a strongly correlated quantum wire described by the fermionic Hubbard model. We illustrate how the method bridges to cluster dynamical mean-field theory upon coupling two baths containing and increasing number of uncorrelated sites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا