ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractal, logarithmic and volume-law entangled non-thermal steady states via spacetime duality

83   0   0.0 ( 0 )
 نشر من قبل Tibor Rakovszky
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The extension of many-body quantum dynamics to the non-unitary domain has led to a series of exciting developments, including new out-of-equilibrium entanglement phases and phase transitions. We show how a duality transformation between space and time on one hand, and unitarity and non-unitarity on the other, can be used to realize steady state phases of non-unitary dynamics that exhibit a rich variety of behavior in their entanglement scaling with subsystem size -- from logarithmic to extensive to emph{fractal}. We show how these outcomes in non-unitary circuits (that are spacetime-dual to unitary circuits) relate to the growth of entanglement in time in the corresponding unitary circuits, and how they differ, through an exact mapping to a problem of unitary evolution with boundary decoherence, in which information gets radiated away from one edge of the system. In spacetime-duals of chaotic unitary circuits, this mapping allows us to uncover a non-thermal volume-law entangled phase with a logarithmic correction to the entropy distinct from other known examples. Most notably, we also find novel steady state phases with emph{fractal} entanglement scaling, $S(ell) sim ell^{alpha}$ with tunable $0 < alpha < 1$ for subsystems of size $ell$ in one dimension. These fractally entangled states add a qualitatively new entry to the families of many-body quantum states that have been studied as energy eigenstates or dynamical steady states, whose entropy almost always displays either area-law, volume-law or logarithmic scaling. We also present an experimental protocol for preparing these novel steady states with only a very limited amount of postselection via a type of teleportation between spacelike and timelike slices of quantum circuits.



قيم البحث

اقرأ أيضاً

One of the most fundamental problems in quantum many-body physics is the characterization of correlations among thermal states. Of particular relevance is the thermal area law, which justifies the tensor network approximations to thermal states with a bond dimension growing polynomially with the system size. In the regime of sufficiently low temperatures, which is particularly important for practical applications, the existing techniques do not yield optimal bounds. Here, we propose a new thermal area law that holds for generic many-body systems on lattices. We improve the temperature dependence from the original $mathcal{O}(beta)$ to $tilde{mathcal{O}}(beta^{2/3})$, thereby suggesting diffusive propagation of entanglement by imaginary time evolution. This qualitatively differs from the real-time evolution which usually induces linear growth of entanglement. We also prove analogous bounds for the Renyi entanglement of purification and the entanglement of formation. Our analysis is based on a polynomial approximation to the exponential function which provides a relationship between the imaginary-time evolution and random walks. Moreover, for one-dimensional (1D) systems with $n$ spins, we prove that the Gibbs state is well-approximated by a matrix product operator with a sublinear bond dimension of $e^{sqrt{tilde{mathcal{O}}(beta log(n))}}$. This proof allows us to rigorously establish, for the first time, a quasi-linear time classical algorithm for constructing an MPS representation of 1D quantum Gibbs states at arbitrary temperatures of $beta = o(log(n))$. Our new technical ingredient is a block decomposition of the Gibbs state, that bears resemblance to the decomposition of real-time evolution given by Haah et al., FOCS18.
The task of classifying the entanglement properties of a multipartite quantum state poses a remarkable challenge due to the exponentially increasing number of ways in which quantum systems can share quantum correlations. Tackling such challenge requi res a combination of sophisticated theoretical and computational techniques. In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states. We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS), whose entanglement properties can be deduced via a constrained, reinforcement learning procedure. In this way, Separable Neural Network States (SNNS) can be used to build entanglement witnesses for any target state.
We analyze a general method for the dissipative preparation and stabilization of volume-law entangled states of fermionic and qubit lattice systems in 1D (and higher dimensions for fermions). Our approach requires minimal resources: nearest-neighbour Hamiltonian interactions that obey a suitable chiral symmetry, and the realization of just a single, spatially-localized dissipative pairing interaction. In the case of a qubit array, the dissipative model we study is not integrable and maps to an interacting fermionic problem. Nonetheless, we analytically show the existence of a unique pure entangled steady state (a so-called rainbow state). Our ideas are compatible with a number of experimental platforms, including superconducting circuits and trapped ions.
The characterizing feature of a many-body localized phase is the existence of an extensive set of quasi-local conserved quantities with an exponentially localized support. This structure endows the system with the signature logarithmic in time entang lement growth between spatial partitions. This feature differentiates the phase from Anderson localization, in a non-interacting model. Experimentally measuring the entanglement between large partitions of an interacting many-body system requires highly non-local measurements which are currently beyond the reach of experimental technology. In this work we demonstrate that the defining structure of many-body localization can be detected by the dynamics of a simple quantity from quantum information known as the total correlations which is connected to the local entropies. Central to our finding is the necessity to propagate specific initial states, drawn from the Hamiltonian unbiased basis (HUB). The dynamics of the local entropies and total correlations requires only local measurements in space and therefore is potentially experimentally accessible in a range of platforms.
Eigenstate thermalization in quantum many-body systems implies that eigenstates at high energy are similar to random vectors. Identifying systems where at least some eigenstates are non-thermal is an outstanding question. In this work we show that in teracting quantum models that have a nullspace -- a degenerate subspace of eigenstates at zero energy (zero modes), which corresponds to infinite temperature, provide a route to non-thermal eigenstates. We analytically show the existence of a zero mode which can be represented as a matrix product state for a certain class of local Hamiltonians. In the more general case we use a subspace disentangling algorithm to generate an orthogonal basis of zero modes characterized by increasing entanglement entropy. We show evidence for an area-law entanglement scaling of the least entangled zero mode in the broad parameter regime, leading to a conjecture that all local Hamiltonians with the nullspace feature zero modes with area-law entanglement scaling, and as such, break the strong thermalization hypothesis. Finally, we find zero-modes in constrained models and propose setup for observing their experimental signatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا