ﻻ يوجد ملخص باللغة العربية
The extension of many-body quantum dynamics to the non-unitary domain has led to a series of exciting developments, including new out-of-equilibrium entanglement phases and phase transitions. We show how a duality transformation between space and time on one hand, and unitarity and non-unitarity on the other, can be used to realize steady state phases of non-unitary dynamics that exhibit a rich variety of behavior in their entanglement scaling with subsystem size -- from logarithmic to extensive to emph{fractal}. We show how these outcomes in non-unitary circuits (that are spacetime-dual to unitary circuits) relate to the growth of entanglement in time in the corresponding unitary circuits, and how they differ, through an exact mapping to a problem of unitary evolution with boundary decoherence, in which information gets radiated away from one edge of the system. In spacetime-duals of chaotic unitary circuits, this mapping allows us to uncover a non-thermal volume-law entangled phase with a logarithmic correction to the entropy distinct from other known examples. Most notably, we also find novel steady state phases with emph{fractal} entanglement scaling, $S(ell) sim ell^{alpha}$ with tunable $0 < alpha < 1$ for subsystems of size $ell$ in one dimension. These fractally entangled states add a qualitatively new entry to the families of many-body quantum states that have been studied as energy eigenstates or dynamical steady states, whose entropy almost always displays either area-law, volume-law or logarithmic scaling. We also present an experimental protocol for preparing these novel steady states with only a very limited amount of postselection via a type of teleportation between spacelike and timelike slices of quantum circuits.
One of the most fundamental problems in quantum many-body physics is the characterization of correlations among thermal states. Of particular relevance is the thermal area law, which justifies the tensor network approximations to thermal states with
The task of classifying the entanglement properties of a multipartite quantum state poses a remarkable challenge due to the exponentially increasing number of ways in which quantum systems can share quantum correlations. Tackling such challenge requi
We analyze a general method for the dissipative preparation and stabilization of volume-law entangled states of fermionic and qubit lattice systems in 1D (and higher dimensions for fermions). Our approach requires minimal resources: nearest-neighbour
The characterizing feature of a many-body localized phase is the existence of an extensive set of quasi-local conserved quantities with an exponentially localized support. This structure endows the system with the signature logarithmic in time entang
Eigenstate thermalization in quantum many-body systems implies that eigenstates at high energy are similar to random vectors. Identifying systems where at least some eigenstates are non-thermal is an outstanding question. In this work we show that in