ﻻ يوجد ملخص باللغة العربية
One of the most fundamental problems in quantum many-body physics is the characterization of correlations among thermal states. Of particular relevance is the thermal area law, which justifies the tensor network approximations to thermal states with a bond dimension growing polynomially with the system size. In the regime of sufficiently low temperatures, which is particularly important for practical applications, the existing techniques do not yield optimal bounds. Here, we propose a new thermal area law that holds for generic many-body systems on lattices. We improve the temperature dependence from the original $mathcal{O}(beta)$ to $tilde{mathcal{O}}(beta^{2/3})$, thereby suggesting diffusive propagation of entanglement by imaginary time evolution. This qualitatively differs from the real-time evolution which usually induces linear growth of entanglement. We also prove analogous bounds for the Renyi entanglement of purification and the entanglement of formation. Our analysis is based on a polynomial approximation to the exponential function which provides a relationship between the imaginary-time evolution and random walks. Moreover, for one-dimensional (1D) systems with $n$ spins, we prove that the Gibbs state is well-approximated by a matrix product operator with a sublinear bond dimension of $e^{sqrt{tilde{mathcal{O}}(beta log(n))}}$. This proof allows us to rigorously establish, for the first time, a quasi-linear time classical algorithm for constructing an MPS representation of 1D quantum Gibbs states at arbitrary temperatures of $beta = o(log(n))$. Our new technical ingredient is a block decomposition of the Gibbs state, that bears resemblance to the decomposition of real-time evolution given by Haah et al., FOCS18.
The extension of many-body quantum dynamics to the non-unitary domain has led to a series of exciting developments, including new out-of-equilibrium entanglement phases and phase transitions. We show how a duality transformation between space and tim
We develop two cutting-edge approaches to construct deep neural networks representing the purified finite-temperature states of quantum many-body systems. Both methods commonly aim to represent the Gibbs state by a highly expressive neural-network wa
Classical chimera states are paradigmatic examples of partial synchronization patterns emerging in nonlinear dynamics. These states are characterized by the spatial coexistence of two dramatically different dynamical behaviors, i.e., synchronized and
We study measures of decoherence and thermalization of a quantum system $S$ in the presence of a quantum environment (bath) $E$. The entirety $S$$+$$E$ is prepared in a canonical thermal state at a finite temperature, that is the entirety is in a ste
Preparation of Gibbs distributions is an important task for quantum computation. It is a necessary first step in some types of quantum simulations and further is essential for quantum algorithms such as quantum Boltzmann training. Despite this, most