ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tree-based Federated Learning Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources

108   0   0.0 ( 0 )
 نشر من قبل Xiaoqing Tan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning is an appealing framework for analyzing sensitive data from distributed health data networks. Under this framework, data partners at local sites collaboratively build an analytical model under the orchestration of a coordinating site, while keeping the data decentralized. While integrating information from multiple sources may boost statistical efficiency, existing federated learning methods mainly assume data across sites are homogeneous samples of the global population, failing to properly account for the extra variability across sites in estimation and inference. Drawing on a multi-hospital electronic health records network, we develop an efficient and interpretable tree-based ensemble of personalized treatment effect estimators to join results across hospital sites, while actively modeling for the heterogeneity in data sources through site partitioning. The efficiency of this approach is demonstrated by a study of causal effects of oxygen saturation on hospital mortality and backed up by comprehensive numerical results.



قيم البحث

اقرأ أيضاً

We investigate how to exploit structural similarities of an individuals potential outcomes (POs) under different treatments to obtain better estimates of conditional average treatment effects in finite samples. Especially when it is unknown whether a treatment has an effect at all, it is natural to hypothesize that the POs are similar - yet, some existing strategies for treatment effect estimation employ regularization schemes that implicitly encourage heterogeneity even when it does not exist and fail to fully make use of shared structure. In this paper, we investigate and compare three end-to-end learning strategies to overcome this problem - based on regularization, reparametrization and a flexible multi-task architecture - each encoding inductive bias favoring shared behavior across POs. To build understanding of their relative strengths, we implement all strategies using neural networks and conduct a wide range of semi-synthetic experiments. We observe that all three approaches can lead to substantial improvements upon numerous baselines and gain insight into performance differences across various experimental settings.
A widely recognized difficulty in federated learning arises from the statistical heterogeneity among clients: local datasets often come from different but not entirely unrelated distributions, and personalization is, therefore, necessary to achieve o ptimal results from each individuals perspective. In this paper, we show how the excess risks of personalized federated learning with a smooth, strongly convex loss depend on data heterogeneity from a minimax point of view. Our analysis reveals a surprising theorem of the alternative for personalized federated learning: there exists a threshold such that (a) if a certain measure of data heterogeneity is below this threshold, the FedAvg algorithm [McMahan et al., 2017] is minimax optimal; (b) when the measure of heterogeneity is above this threshold, then doing pure local training (i.e., clients solve empirical risk minimization problems on their local datasets without any communication) is minimax optimal. As an implication, our results show that the presumably difficult (infinite-dimensional) problem of adapting to client-wise heterogeneity can be reduced to a simple binary decision problem of choosing between the two baseline algorithms. Our analysis relies on a new notion of algorithmic stability that takes into account the nature of federated learning.
It is important to estimate the local average treatment effect (LATE) when compliance with a treatment assignment is incomplete. The previously proposed methods for LATE estimation required all relevant variables to be jointly observed in a single da taset; however, it is sometimes difficult or even impossible to collect such data in many real-world problems for technical or privacy reasons. We consider a novel problem setting in which LATE, as a function of covariates, is nonparametrically identified from the combination of separately observed datasets. For estimation, we show that the direct least squares method, which was originally developed for estimating the average treatment effect under complete compliance, is applicable to our setting. However, model selection and hyperparameter tuning for the direct least squares estimator can be unstable in practice since it is defined as a solution to the minimax problem. We then propose a weighted least squares estimator that enables simpler model selection by avoiding the minimax objective formulation. Unlike the inverse probability weighted (IPW) estimator, the proposed estimator directly uses the pre-estimated weight without inversion, avoiding the problems caused by the IPW methods. We demonstrate the effectiveness of our method through experiments using synthetic and real-world datasets.
The goal of many scientific experiments including A/B testing is to estimate the average treatment effect (ATE), which is defined as the difference between the expected outcomes of two or more treatments. In this paper, we consider a situation where an experimenter can assign a treatment to research subjects sequentially. In adaptive experimental design, the experimenter is allowed to change the probability of assigning a treatment using past observations for estimating the ATE efficiently. However, with this approach, it is difficult to apply a standard statistical method to construct an estimator because the observations are not independent and identically distributed. We thus propose an algorithm for efficient experiments with estimators constructed from dependent samples. We also introduce a sequential testing framework using the proposed estimator. To justify our proposed approach, we provide finite and infinite sample analyses. Finally, we experimentally show that the proposed algorithm exhibits preferable performance.
Most existing studies on the double/debiased machine learning method concentrate on the causal parameter estimation recovering from the first-order orthogonal score function. In this paper, we will construct the $k^{mathrm{th}}$-order orthogonal scor e function for estimating the average treatment effect (ATE) and present an algorithm that enables us to obtain the debiased estimator recovered from the score function. Such a higher-order orthogonal estimator is more robust to the misspecification of the propensity score than the first-order one does. Besides, it has the merit of being applicable with many machine learning methodologies such as Lasso, Random Forests, Neural Nets, etc. We also undergo comprehensive experiments to test the power of the estimator we construct from the score function using both the simulated datasets and the real datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا