ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-Order Orthogonal Causal Learning for Treatment Effect

146   0   0.0 ( 0 )
 نشر من قبل Yiyan Huang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Most existing studies on the double/debiased machine learning method concentrate on the causal parameter estimation recovering from the first-order orthogonal score function. In this paper, we will construct the $k^{mathrm{th}}$-order orthogonal score function for estimating the average treatment effect (ATE) and present an algorithm that enables us to obtain the debiased estimator recovered from the score function. Such a higher-order orthogonal estimator is more robust to the misspecification of the propensity score than the first-order one does. Besides, it has the merit of being applicable with many machine learning methodologies such as Lasso, Random Forests, Neural Nets, etc. We also undergo comprehensive experiments to test the power of the estimator we construct from the score function using both the simulated datasets and the real datasets.



قيم البحث

اقرأ أيضاً

The goal of many scientific experiments including A/B testing is to estimate the average treatment effect (ATE), which is defined as the difference between the expected outcomes of two or more treatments. In this paper, we consider a situation where an experimenter can assign a treatment to research subjects sequentially. In adaptive experimental design, the experimenter is allowed to change the probability of assigning a treatment using past observations for estimating the ATE efficiently. However, with this approach, it is difficult to apply a standard statistical method to construct an estimator because the observations are not independent and identically distributed. We thus propose an algorithm for efficient experiments with estimators constructed from dependent samples. We also introduce a sequential testing framework using the proposed estimator. To justify our proposed approach, we provide finite and infinite sample analyses. Finally, we experimentally show that the proposed algorithm exhibits preferable performance.
114 - Jin Li , Ye Luo , Xiaowei Zhang 2021
In the standard data analysis framework, data is first collected (once for all), and then data analysis is carried out. With the advancement of digital technology, decisionmakers constantly analyze past data and generate new data through the decision s they make. In this paper, we model this as a Markov decision process and show that the dynamic interaction between data generation and data analysis leads to a new type of bias -- reinforcement bias -- that exacerbates the endogeneity problem in standard data analysis. We propose a class of instrument variable (IV)-based reinforcement learning (RL) algorithms to correct for the bias and establish their asymptotic properties by incorporating them into a two-timescale stochastic approximation framework. A key contribution of the paper is the development of new techniques that allow for the analysis of the algorithms in general settings where noises feature time-dependency. We use the techniques to derive sharper results on finite-time trajectory stability bounds: with a polynomial rate, the entire future trajectory of the iterates from the algorithm fall within a ball that is centered at the true parameter and is shrinking at a (different) polynomial rate. We also use the technique to provide formulas for inferences that are rarely done for RL algorithms. These formulas highlight how the strength of the IV and the degree of the noises time dependency affect the inference.
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of m odels across different experimental conditions for detecting direct causal links. However, these approaches generally do not scale well with the number of explanatory variables, are difficult to extend to nonlinear relationships, and require data across different experiments. Inspired by {em Debiased} machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the direct causal parent of the response. We propose an algorithm that works for purely observational data, while also offering theoretical guarantees, including the case of partially nonlinear relationships. Requiring only one estimation for each variable, we can apply our approach even to large graphs, demonstrating significant improvements compared to established approaches.
Low rank tensor learning, such as tensor completion and multilinear multitask learning, has received much attention in recent years. In this paper, we propose higher order matching pursuit for low rank tensor learning problems with a convex or a nonc onvex cost function, which is a generalization of the matching pursuit type methods. At each iteration, the main cost of the proposed methods is only to compute a rank-one tensor, which can be done efficiently, making the proposed methods scalable to large scale problems. Moreover, storing the resulting rank-one tensors is of low storage requirement, which can help to break the curse of dimensionality. The linear convergence rate of the proposed methods is established in various circumstances. Along with the main methods, we also provide a method of low computational complexity for approximately computing the rank-one tensors, with provable approximation ratio, which helps to improve the efficiency of the main methods and to analyze the convergence rate. Experimental results on synthetic as well as real datasets verify the efficiency and effectiveness of the proposed methods.
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work exploits stability of regression coefficients or invariance properti es of models across different experimental conditions for reconstructing the full causal graph. These approaches generally do not scale well with the number of the explanatory variables and are difficult to extend to nonlinear relationships. Contrary to existing work, we propose an approach which even works for observational data alone, while still offering theoretical guarantees including the case of partially nonlinear relationships. Our algorithm requires only one estimation for each variable and in our experiments we apply our causal discovery algorithm even to large graphs, demonstrating significant improvements compared to well established approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا