ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifold Regularized Dynamic Network Pruning

88   0   0.0 ( 0 )
 نشر من قبل Yehui Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural network pruning is an essential approach for reducing the computational complexity of deep models so that they can be well deployed on resource-limited devices. Compared with conventional methods, the recently developed dynamic pruning methods determine redundant filters variant to each input instance which achieves higher acceleration. Most of the existing methods discover effective sub-networks for each instance independently and do not utilize the relationship between different inputs. To maximally excavate redundancy in the given network architecture, this paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks (dubbed as ManiDP). We first investigate the recognition complexity and feature similarity between images in the training set. Then, the manifold relationship between instances and the pruned sub-networks will be aligned in the training procedure. The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost compared to the state-of-the-art methods. For example, our method can reduce 55.3% FLOPs of ResNet-34 with only 0.57% top-1 accuracy degradation on ImageNet.



قيم البحث

اقرأ أيضاً

Network architectures obtained by Neural Architecture Search (NAS) have shown state-of-the-art performance in various computer vision tasks. Despite the exciting progress, the computational complexity of the forward-backward propagation and the searc h process makes it difficult to apply NAS in practice. In particular, most previous methods require thousands of GPU days for the search process to converge. In this paper, we propose a dynamic distribution pruning method towards extremely efficient NAS, which samples architectures from a joint categorical distribution. The search space is dynamically pruned every a few epochs to update this distribution, and the optimal neural architecture is obtained when there is only one structure remained. We conduct experiments on two widely-used datasets in NAS. On CIFAR-10, the optimal structure obtained by our method achieves the state-of-the-art $1.9$% test error, while the search process is more than $1,000$ times faster (only $1.5$ GPU hours on a Tesla V100) than the state-of-the-art NAS algorithms. On ImageNet, our model achieves 75.2% top-1 accuracy under the MobileNet settings, with a time cost of only $2$ GPU days that is $100%$ acceleration over the fastest NAS algorithm. The code is available at url{ https://github.com/tanglang96/DDPNAS}
51 - Wei Zhu , Qiang Qiu , Jiaji Huang 2017
Deep neural networks have proved very successful on archetypal tasks for which large training sets are available, but when the training data are scarce, their performance suffers from overfitting. Many existing methods of reducing overfitting are dat a-independent, and their efficacy is often limited when the training set is very small. Data-dependent regularizations are mostly motivated by the observation that data of interest lie close to a manifold, which is typically hard to parametrize explicitly and often requires human input of tangent vectors. These methods typically only focus on the geometry of the input data, and do not necessarily encourage the networks to produce geometrically meaningful features. To resolve this, we propose a new framework, the Low-Dimensional-Manifold-regularized neural Network (LDMNet), which incorporates a feature regularization method that focuses on the geometry of both the input data and the output features. In LDMNet, we regularize the network by encouraging the combination of the input data and the output features to sample a collection of low dimensional manifolds, which are searched efficiently without explicit parametrization. To achieve this, we directly use the manifold dimension as a regularization term in a variational functional. The resulting Euler-Lagrange equation is a Laplace-Beltrami equation over a point cloud, which is solved by the point integral method without increasing the computational complexity. We demonstrate two benefits of LDMNet in the experiments. First, we show that LDMNet significantly outperforms widely-used network regularizers such as weight decay and DropOut. Second, we show that LDMNet can be designed to extract common features of an object imaged via different modalities, which proves to be very useful in real-world applications such as cross-spectral face recognition.
Based on filter magnitude ranking (e.g. L1 norm), conventional filter pruning methods for Convolutional Neural Networks (CNNs) have been proved with great effectiveness in computation load reduction. Although effective, these methods are rarely analy zed in a perspective of filter functionality. In this work, we explore the filter pruning and the retraining through qualitative filter functionality interpretation. We find that the filter magnitude based method fails to eliminate the filters with repetitive functionality. And the retraining phase is actually used to reconstruct the remained filters for functionality compensation for the wrongly-pruned critical filters. With a proposed functionality-oriented pruning method, we further testify that, by precisely addressing the filter functionality redundancy, a CNN can be pruned without considerable accuracy drop, and the retraining phase is unnecessary.
114 - Tong Zhang 2017
Symmetric positive definite (SPD) matrices (e.g., covariances, graph Laplacians, etc.) are widely used to model the relationship of spatial or temporal domain. Nevertheless, SPD matrices are theoretically embedded on Riemannian manifolds. In this pap er, we propose an end-to-end deep manifold-to-manifold transforming network (DMT-Net) which can make SPD matrices flow from one Riemannian manifold to another more discriminative one. To learn discriminative SPD features characterizing both spatial and temporal dependencies, we specifically develop three novel layers on manifolds: (i) the local SPD convolutional layer, (ii) the non-linear SPD activation layer, and (iii) the Riemannian-preserved recursive layer. The SPD property is preserved through all layers without any requirement of singular value decomposition (SVD), which is often used in the existing methods with expensive computation cost. Furthermore, a diagonalizing SPD layer is designed to efficiently calculate the final metric for the classification task. To evaluate our proposed method, we conduct extensive experiments on the task of action recognition, where input signals are popularly modeled as SPD matrices. The experimental results demonstrate that our DMT-Net is much more competitive over state-of-the-art.
Making deep convolutional neural networks more accurate typically comes at the cost of increased computational and memory resources. In this paper, we reduce this cost by exploiting the fact that the importance of features computed by convolutional l ayers is highly input-dependent, and propose feature boosting and suppression (FBS), a new method to predictively amplify salient convolutional channels and skip unimportant ones at run-time. FBS introduces small auxiliary connections to existing convolutional layers. In contrast to channel pruning methods which permanently remove channels, it preserves the full network structures and accelerates convolution by dynamically skipping unimportant input and output channels. FBS-augmented networks are trained with conventional stochastic gradient descent, making it readily available for many state-of-the-art CNNs. We compare FBS to a range of existing channel pruning and dynamic execution schemes and demonstrate large improvements on ImageNet classification. Experiments show that FBS can respectively provide $5times$ and $2times$ savings in compute on VGG-16 and ResNet-18, both with less than $0.6%$ top-5 accuracy loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا